



## GridKa School 2010 Cloud Computing Workshop

Christian Baun, Matthias Bonn, Thomas Hauth, Marcel Kunze, Tobias Kurze, Viktor Mauch

Steinbuch Centre for Computing (SCC), Research Group Cloud Computing



#### Contents





CLOUD COMPLITING

# BIG SW

mito

The

# Der große Wandel

Die Vernetzung der Welt von Edison bis Google

#### NICHOLAS CARR

# **Definition: Cloud-Computing**

#### Definition

Building on compute and storage virtualization, and leveraging the modern Web, Cloud Computing provides scalable, network-centric, abstracted IT <u>infrastructure</u>, <u>platforms</u>, and <u>applications</u> as on-demand services that are billed by consumption.

Transition of IT into the era of industrialization

- One or few data centers with heterogeneous or homogenous resources under central control
- Virtualized resources
- Pay-as-you-go
- Ease of use
- Transition of data centers to IT service centers
  - "Old IT": services are created and managed manually
  - "New IT": fully automated services



### **Own hardware?**





**SERVER HUGGER CAUGHT IN THE ACT !** 



#### A REAL SERVER HUGGER !





### **Reasons to dislike Cloud Computing**



- Hardware is somehow sexy
  - Lots of hardware looks so important at open house ("Tag der offenen Tür")
  - Loss of hardware means loss of authority
- Users have a bad feeling when important data is stored outside
  - No problem with emails (?!)
- Administrators love their hardware
  - Despite all days and nights full of pain and suffering
  - Stockholm syndrom?!
- Fear for the future
  - In an IT service centre are more management tasks and fewer technical jobs

WHERE THE HECK IS MY JATA?

ITS THERE, UP IN THE CLOUDS.



Brainstuck.com

### **Concept of Cloud Computing – Organisatorical Types**





#### Public Cloud

- Providers have commercial interests
- Users have no costs concerning purchase, operation and maintenance of own hardware
- Critical situation concerning data privacy and security of sensible information
- Fear for a Lock-in situation!

#### Private Cloud

- Providers and users are from the same organization
- No security or privacy issues
- Similar operation costs like a non Cloud-based architecture
- Lock-in situation cannot happen
- Compatible with the popular public cloud services (in a perfect world!)

#### Hybrid Cloud

Services of private and public clouds are combined to process load peaks or outsource data copies

### **Everything as a Service (XaaS)**



#### 1. Layer: Infrastructure as a Service (laaS)

- Users run virtual server instances with optional operations system configurations (restricted by the providers)
- Administrative user rights
- Own firewall rules
- No direct contact to physical hardware for the user

#### 2. Layer: Platform as a Service (PaaS)

- Scalable running environment and (sometimes) development environment for 1 or 2 programming languages
- No administrative effort concerning the operation environment
- More restriction then in laaS

#### 3. Layer: Software as a Service (SaaS)

- Applications a run by a provider
- No need for a local installation at the users site
- Users do not need to take care about installation, security updates, ...
- Users need to trust the provider concerning the process of their data in the cloud (e.g. E-Mail accounts)



#### 4. Layer: Human as a Service (HaaS)

- Principle of crowd sourcing
- Human creativity becomes available as a resource in the cloud
- Interesting for tasks which are difficult to automate by computers (e.g.: translation, image recognition)

### **Amazon Web Services (AWS)**

http://aws.amazon.com



- Current Situation on the laaS market
  - Amazon is the market leader with its AWS
  - AWS are a collection of different Cloud services
  - Billing according to consumption
  - Very dynamic development
- Popular services within the AWS are EC2, S3, EBS...

| Elastic Compute Cloud (EC2)  | Service for virtual servers (instances)                                    |
|------------------------------|----------------------------------------------------------------------------|
| Simple Storage Service (S3)  | Service for Web objects                                                    |
| Elastic Block Store (EBS)    | Service for persistent data storage volumes                                |
| SimpleDB                     | Distributed database management system                                     |
| Simple Queue Service (SQS)   | Service for Message Queues                                                 |
| Elastic Load Balancing (ELB) | Service for Load Balancer to distribute traffic to different EC2 instances |
| Mechanical Turk              | Market place for HuaaS/Crowdsourcing                                       |

### **Commercial Cloud Service Providers (small selection)**





- Besides the AWS, lots of well-established public cloud service offers exist
- Commercial Cloud Systems are often proprietary and not all aspects of their architecture are open
  - Constitution of own private cloud IaaS or PaaS is not always possible
  - Construction of hybrid clouds is even more difficult

#### **Overview of Private Cloud PaaS Frameworks**



- Only few private cloud PaaS solutions available
- Number of available solutions is shorter than it appears in the first sight

| 10gen            | http://www.10gen.com                |  |
|------------------|-------------------------------------|--|
| Reasonably Smart | http://reasonablysmart.com          |  |
| AppScale         | http://appscale.cs.ucsb.edu         |  |
| typhoonAE        | http://code.google.com/p/typhoonae/ |  |

#### **Overview of Private Cloud IaaS Frameworks**



- Lots of Private Cloud IaaS solutions available at first sight
  - All of them are Open Source!
- Already used in science projects
  - CERN builds an Cloud Environment with OpenNebula with the goal to manage up to 45,000 Virtual Machine instances

| Cloud.com CloudStack | http://cloud.com                                         |
|----------------------|----------------------------------------------------------|
| abiCloud             | http://www.abicloud.org                                  |
| OpenNebula           | http://www.opennebula.org                                |
| Nimbus               | http://www.nimbusproject.org                             |
| Tashi                | http://www.pittsburgh.intel-research.net/projects/tashi/ |
| Enomaly ECP          | http://src.enomaly.com                                   |
| OpenECP              | http://www.openecp.org                                   |
| Eucalyptus           | http://open.eucalyptus.com                               |

# Private Cloud IaaS im Detail (3)



#### Nimbus

- Build on top of the Grid middleware Globus 4
- EC2 API implemented partly
  - describe images
  - describe, run, reboot und terminate instances
  - add und delete keypair
- EC2-compatible resources can be used via remote (=> Hybrid Cloud)

#### Eucalyptus

- One of the most popular private cloud laaS solutions
- May 2008: Version 1.0
- EUCALYPTUS Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems
- Emulates the most popular AWS services
  - API compatible to Amazon EC2
  - Includes "Walrus", a S3 compatible storage service
  - Includes "Storage Controller", an EBS compatible storage service

# **Eucalyptus – Components**



http://open.eucalyptus.com

#### Cloud Controller (CLC)

- Operates like a meta scheduler in the Cloud
- Collects resource information from the CCs
- Cluster Controller (CC)
  - Schedules the distribution of virtual machines to the NCs
  - Collects free resource information from the NCs
- Node Controller (NC)
  - Runs on every worker node in the cloud
  - Xen hypervisor or KVM running
  - Provides resource information to the CC
- Walrus
- Storage Controller



#### **OpenNebula – Introduction**



- OpenNebula is an open-source toolkit to easily build any type of cloud: private, public and hybrid.
- OpenNebula supports KVM, Xen and VMware
- OpenNebula has been designed to be integrated with any networking and storage solution and so to fit into any existing data center.
- Primary Objective: Efficient Management of VM Instances
  - CERN Cloud Instance: ~ 7.500 VMs on 400 cluster nodes; Future: more than 40.000 VMs
- Only a small part of the EC2 API implemented since OpenNebula 2.0 Beta1
  - describe images
  - describe, run, reboot und terminate instances
- Trivial architecture
  - Easy to implement additional features
  - Easy to debug because of central log data
- Nodes can be grouped, Important for HPCaaS and network latency (e.g. MPI)
- No storage service included



#### **OpenNebula – Structure Notes**

- Installation:
  - Documentation available for Ubuntu, CentOS, Debian, OpenSUSE, MacOS, ...

see: http://opennebula.org/documentation:documentation

- Structure:
  - Separation in Front-End and Cluster Nodes
  - Communication based on SSH (password-less login via SSH keys) and Ruby scripts
  - Front-End uses the libvirt library to control the Hypervisor on the Cluster Nodes via SSH
  - To provide one or more physical networks for the VMs, the cluster nodes have to be set up with Ethernet Bridges
- Two operation methods for VM Deployment:
  - via SSH
    - Images are copied via SSH to the Cluster Node partitions
  - on a Shared File System
    - Live Migration is possible
    - FS should be performant enough to manage high I/O -> SAN mount







### **OpenNebula – Private Cloud Tutorial Instance**

- 7x Dell Blades Dual Intel Xeon Quad Core 2,66 GHz / 16 GB Ram: 1 Front-End + 6 Cluster Nodes (48 Cores)
- Connection: 1 Gigabit Ethernet
- Image Deployment via SSH
- Based on Ubuntu 10.04 LTS Server
- Virtualization Technology: KVM Hypervisor
- Version: OpenNebula 2.0 Beta1
- Installation can be found under /srv/cloud/one on the front-end





#### **Exploring the Private Cloud**



#### Hands on... explore the Cloud with some basic OpenNebula commands:

<u>Cluster Node Management:</u> onehost <list top show create delete enable disable ...> Check out how many cluster nodes are available with onehost list. Explore the details of one cluster node with onehost show host\_id

Virtual Network Management: onevnet <list show create delete ...>

Check out which virtual networks are available with **onevnet list**.

Explore the details of one virtual network with **onevnet show** vnet\_id

Virtual Machine Management: onevm <create delete migrate supend resume ...>

Check out how many virtual machines are running with **onevm list** or **onevm top**. Explore the details of one virtual machine with **onevm show** *vm id* 

Image Management: oneimage <list show ...> Check out how many images are available with oneimage list Explore the details of one image with oneimage show image\_id

<u>Cloud User Management:</u> oneuser <create delete list>

Only available for the cloud admin to create and delete cloud users.

### Virtual Networks I



#### A Virtual Network in OpenNebula

- Defines a MAC/IP address space to be used by VMs
- Each Virtual Network is associated with a physical network through a bridge

#### Virtual Network definition

- **Name** of the Network
- 🛯 Туре
  - **Fixed**, a set of IP/MAC leases
  - Ranged, defines a network range
- Bridge, name of the physical bridge in the physical host where the VM should connect its network interface

| # Ranged VNET temp: | late file       |
|---------------------|-----------------|
| NAME                | = "Red LAN"     |
| TYPE                | = RANGED        |
| BRIDGE              | = eth0          |
| NETWORK_SIZE        | = C             |
| NETWORK_ADDRESS     | = 192.168.169.0 |
| _                   |                 |
|                     |                 |

| # Fixed VNET | template | file                |
|--------------|----------|---------------------|
| NAME         | =        | "Blue LAN"          |
| TYPE         | =        | FIXED               |
| BRIDGE       | =        | br0                 |
| LEASES       | =        | [IP=192.168.170.11] |
| LEASES       | =        | [IP=192.168.170.12] |
| LEASES       | =        | [IP=192.168.170.13] |
|              |          |                     |

Hands on... create your own fixed Virtual Network with two IPs.

#### Virtual Networks II



#### How to use a Virtual Network with your VMs

Define NICs attached to a given virtual network. The VM will get a NIC with a free MAC address in the network and attached to the corresponding bridge

| #A VM with two interfaces each one in a different vlan |                                             |  |  |
|--------------------------------------------------------|---------------------------------------------|--|--|
| NIC                                                    | = [NETWORK="Blue LAN"]                      |  |  |
| NIC                                                    | = [NETWORK="Red LAN"]                       |  |  |
|                                                        |                                             |  |  |
| #Ask for a specific IP/MAC                             |                                             |  |  |
| NIC                                                    | = $[NETWORK="Blue LAN", IP = 192.168.0.11]$ |  |  |

Prepare the VM to use the IP. Sample scripts to set the IP based on the MAC are provided for several Linux distributions.



#### **Virtual Machines I**



Preparing a VM to be used with OpenNebula

- You can use any VM prepared for the target hypervisor
- Prepare master images: Install once and deploy many;
- Do not put private information (e.g. ssh keys) in the master images, instead use CONTEXT (see later)
- Pass arbitrary data to a master image using CONTEXT
- Virtual Machine Life-cycle:



### **Virtual Machines II**



- Virtual Machines are defined in a VM template file
- Each VM has an unique ID in OpenNebula, the VM\_ID
- All log files are stored in /srv/cloud/one/var/<VM\_ID> on the head node
- The images will be copied via a SSH connect to the cluster nodes

- A Virtual Machine template in OpenNebula consists of
  - a **capacity** section in terms of name, memory and cpu
  - a set of **NICs** attached to one or more virtual networks
  - a set of **disk images**, to be "transferred" to/from the execution host



### Virtual Machine Definition File (VM template) I

| #<br># Capacity Section<br>#           |                                                                                                                                                        |                                     |                                  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|--|--|
| NAME<br>CPU<br>MEMORY<br>VCPU          | <pre>= "vm-example" = "percentage of CPU divided by 100 required for the Virtual Machine" = "amount of requestet MEM" = "number of virtual cpus"</pre> |                                     |                                  |  |  |
| #<br># OS and<br>#                     | #<br># OS and boot options                                                                                                                             |                                     |                                  |  |  |
| os                                     | = [                                                                                                                                                    |                                     |                                  |  |  |
|                                        | kernel                                                                                                                                                 | <pre>= "path_to_os_kernel",</pre>   | <pre># para-virtualization</pre> |  |  |
|                                        | initrd                                                                                                                                                 | = "path_to_initrd_image",           | <pre># para-virtualization</pre> |  |  |
|                                        | kernel_cmd                                                                                                                                             | <pre>= "kernel_command_line",</pre> |                                  |  |  |
|                                        | root                                                                                                                                                   | = "device to be mounted as ro       | pot",                            |  |  |
|                                        | bootloader                                                                                                                                             | = "path to the boot loader ex       | sec",                            |  |  |
|                                        | boot                                                                                                                                                   | = "device to boot from" ]           |                                  |  |  |
| #<br># Features of the hypervisor<br># |                                                                                                                                                        |                                     |                                  |  |  |
| FEATURES                               | = [                                                                                                                                                    |                                     |                                  |  |  |
|                                        | pae = "yes no                                                                                                                                          | o", # optional, KVM                 |                                  |  |  |
|                                        | acpi = "yes no                                                                                                                                         | o"] # optional, KVM                 |                                  |  |  |



### Virtual Machine Definition File (VM template) II

```
# VM Disks
                 _____
       ] =
DISK
       type = "image|floppy|disk|cdrom|swap|fs|block",
       source = "path to disk image file|physical dev",
       format = "type for fs disks",
       size = "size in GB",
       target = "device_to_map_disk",
       bus = "ide|scsi|virtio|xen",
       readonly = "yes|no",
       clone = "yes|no",
       save = "yes|no" ]
                _____
 Network Interface
                _____
       ] =
NIC
       network = "name of the virtual network",
       target = "device name to map if",
       ip = "ip_address",
       bridge = "name_of_bridge_to_bind_if",
       mac = "HW address",
       script = "path to script to bring up if",
       model = "NIC model" 1
```



### Virtual Machine Definition File (VM template) III

```
# I/O Interfaces
                     _____
INPUT
       ] =
       type = "mouse|tablet",
               = "usb|ps2|xen" ]
       bus
GRAPHICS = [
       type = "vnc|sdl",
listen = "IP_to_listen_on",
port = "port_for_VNC_server",
       passwd = "password for VNC server" ]
          _____
# RAW Hypervisor attributes
                     _____
RAW
       ] =
       type = "xen|kvm",
data = "raw_domain_configuration" ]
 CONTEXT Section used for Customization of VMs
             _____
CONTEXT = [ ... ] # see later
```



#### Submitting & Management of VMs



Hands on... define a minimal VM template and create your first VM:

| #<br># VM temp<br>#    | late for the ubuntu       | image: "ubuntu-lucid                        | <br>["                         |
|------------------------|---------------------------|---------------------------------------------|--------------------------------|
| NAME<br>MEMORY<br>VCPU | = "my_VM"<br>= 512<br>= 2 |                                             | # define a name for your V     |
| DISK<br>NIC            | = [ image<br>= [ NETWORK  | <pre>= "ubuntu-lucid" ] = "my_VNET" ]</pre> | # enter here your created vnet |

| Submit your VM:                                                                                      | onevm create vm_template_file                                           |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Monitor the status for your VM:                                                                      | onevm top                                                               |
| Get detailed information, (e.g. IP):                                                                 | onevm show VM_ID                                                        |
| Try to login (User: "ubuntu", PW: "ubuntu"):                                                         | ssh ubuntu@VM_IP                                                        |
| Take a look to the script file " <b>/etc/init.d/vmcontext</b> " w how the network will be configured | hich is part of the boot procedure and try to understand                |
| Try to perform some VM operation:                                                                    | onevm <migrate suspend resume delete ></migrate suspend resume delete > |

Optional: Modify the template: add another DISK, e.g.: type="fs", format="ext2", size="100", target="hdb" and try to mount it in the VM



### **Customization of VMs**

ONE provides a method to modify created VMs. The master image **ubuntu-lucid** is already preconfigured to support the CONTEXT Block:

- The ISO Image will be mounted under /mnt/context
- The init.sh script will be executed with root privileges
- Afterwards the ISO Image will be un-mounted

```
# VM template
...
CONTEXT = [
files = "/path/init.sh /path/id_rsa.pub",
target = "hdc",
host = "myHostname",
dns1 = "192.168.42.42",
...]
```



Hands on... define a VM template for the Ubuntu Image and try to use the CONTEXT Block (see Handout).

#### **Performing some Rendering Jobs**







Hands on... define a new CONTEXT section for the Ubuntu Image to perform a rendering job. Divide the complete rendering procedure of the pictures in 2 parts:

- First VM: 0..50
- Second VM: 51..99
- See handout!!



ray.pov



votex.pov



flower.pov

#### Steinbuch Centre for Computing

#### **Further Feature**

- Hybrid Cloud:
  - Provides the possibility to control AWS / ElasticHosts resources with the same basic ONE commands
  - Creates a simple abstraction layer over the EC2-API-Tools
  - However there is no simple way to deploy own images to AWS / ElasticHosts
    - Extension of a Private Cloud to expose RESTful Cloud interfaces
    - Can be added to you Private or Hybrid Cloud if you want to provide partners or external users with acces to your infrastructure

#### EC2 Compatible Management:

Since ONE 2.0Beta1 there is the possibility to control ONE resources via EC2 compatible GUI tools, like

**Public Cloud:** 

- HybridFox / ElasticFox (Firefox Plug-Ins)
- KOALA (PaaS Browser Service-<u>http://koalacloud.appspot.com/</u>)

#### 28







### **Thank You!**



#### Links:



2-days Tutorial with detailed information concerning Installation of OpenNebula 1.4 / Hybrid Cloud / Public Cloud by *Ruben S.Montero, University Complutense of Madrid*:

http://dl.dropbox.com/u/4497643/buildingcloudsone1-4.pdf