

The Tier-1 centre GridKa

Dr. Andreas Heiss

Steinbuch Centre for Computing

KIT north campus

History

- 2001: Proposal of a "Regional Data and Computing Centre" (RDCCG) by the Particle and Nuclear Physics Communities in Germany.
- 2002: Start of the project GridKa at (former) FZK
- Three project phases

- Production site for non-LHC experiments (e.g. Tevatron: CDF, D0) long before the LHC start
 - gain experiences with HEP computing
 - test Grid techniques

Phase 3 just started. Are we finished now?

GridKa today: resources and services for HEP and Astroparticle physics experiments

- GridKa supports all 4 of the big LHC experiments as a 'Tier-1' centre.
- GridKa is responsible for the storage and processing of approx. 14% of the total LHC data.
- GridKa supported non-LHC experiments:

- Resources for Compass, Babar, CDF, D0 remain approx. constant until end of data analyses.
- Grid test environment for Belle-II
- Resources for Auger

Projects

GridKa paticipates in national and international projects and working groups:

Helmholtz Alliance

- Test setups
- R&D
- CPU and storage resources
- Support

The Worldwide LHC Computing Grid (WLCG)

Data rates of the LHC experiments

The Worldwide LHC Computing Grid (WLCG) the 'fifth experiment'

Memorandum of Understanding

for Collaboration in the Deployment and Exploitation of the Worldwide LHC Computing Grid

between

The EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ("CERN"), an intergovernmental Organization having its seat at Geneva, Switzerland, as the Host Laboratory of the Worldwide LHC Computing Grid, the provider of the Tier0 Centre and the CERN Analysis Facility, and as the coordinator of the LCG project,

on the one hand,

and

all the Institutions participating in the provision of the Worldwide LHC Computing Grid with a Tier1 and/ or Tier2 Computing Centre (including federations of such Institutions with computer centres that together form a Tier1 or Tier2 Centre), as the case may be, represented by their Funding Agencies for the purposes of signature of this Memorandum of Understanding,

on the other hand,

- Participating countries (funding agencies)
- LHC experiments
- Computing and storage resources
- Service levels
- Project organisation and management

The LHC optical private network

The LHC optical private network Data rate from CERN to Tier-1 sites

The LHC optical private network

Automatic failover : network failure of the LHCOPN link between CERN and GridKa

routing of T0-T1 traffic over the backup link via CNAF

Resources

GridKa compute power and storage capacity (approx. numbers)

2010: ~10000 CPU cores, ~10000 Terabytes disk, >10000 Terabytes tape

Resource usage: CPU

2003 LhcB IWR 17% 0% D0 13% Alice 0% D0 Compass 2% Atlas 43% 2% CMS 7% CDF 2%-Babar Babar 2% 22% Compass CDF CMS 4% 3% 9% Atlas

> 1 980 000 hours (LHC: 28%)

2009

42 770 000 hours (LHC: 58%)

LHC Tier-1 computing resources

Ramp-up once per year in April

- O(100) compute nodes
- PetaBytes of disks and many servers

Accurate planning is a must!

- Infrastructure
 - Power, Cooling
 - Floorspace and racks
 - SAN and LAN
- Time
 - European procurement procedures: >6 months
 - (Wo)man power

> 1300 Compute nodes ~ 350 Servers - File server - Databases - Grid services > 100 Routers and switches

Big increase of resources every year

- can result in scaling problems:
 - Batch system
 - Network / shared file systems
 - Storage systems
 - LAN and SAN
 - Management and monitoring systems
- → Take new hardware into production in several steps

Hardware operated for 3-5 years

- Mixture of older and newer hardware in production, e.g.
 - 4 core and 8 core compute nodes
 - File servers with 1GE or 10GE LAN
 - File systems of 1TB or 18TB size
 - ...
- Replacement of hardware necessary
 - compute nodes \rightarrow easy
 - disk systems or file servers
 - \rightarrow O(PB) of data has to be copied every year
 - should be transparent to users

Risk of data access bottlenecks!

Services

Grid services @ GridKa

	Kai ja
Local services	
CE	Compute Element: interface to local batch system
sBDII	Information system: publishes information about resources and services
SE, SRM	Storage element, storage resource manager
APEL, DGAS	Accounting
Regional / global services	
RB, WMS	Resource broker, workload management system
BDII	Global Grid information system
LFC	File catalogue: maps between logical file names and physical files in storage elements
FTS	File transfer service: schedules and performes file transfers
Andreas Heiss	

Grid services @ GridKa

Experiment specific services @ GridKa

Local services	
VOBOX	Runs experiment specific services, e.g. PhEDEx, Alien,
Databases	Access to conditions data
Squid	Database cache
Regional / global services	
LFC	Special instance of LFC, data streamed from CERN to GridKa

Services @ GridKa

Computing models of HEP experiments rely on many different services

(e.g. a data transfer involves: FTS, LFC, SRM, SE, VOBOX)

- Several single points of failure for each task
- High availability of services is essential
 - The total availability is the *product* of the availability of the individual components.
- Redundancies of services and service components
 - Several instances of services
 - e.g. CE, WMS
 - Failover mechanism ideally to be implemented in the client (if the first does not work, try the second)
 - High availability setup of services
 - e.g. FTS, LFC

Example: setup of FTS at GridKa

- FTS servers each run a web service.
- Transfer and VO agents distributed, can be moved to another machine in case of failure.
- Oracle database RAC stores transfer jobs and job status.
- Agents query database.

- FTS servers distributed in two racks
- Oracle RAC distributed in two racks
- All hardware with redundant power supplies

Operations

Operation of a Tier-1 centre

- Management tools
 - OS installation
 - Configuration of OS and services
 - Scalability
 - Administrator mistakes can have large impact

Monitoring

- Error and performance monitoring
- Error condition can be a logic combination of several metrics
- Definition of alarm conditions for on-call service
 - Avoid false positive alarms

Monitoring

Example: on-call alarm condition for Grid services

Security

- GridKa is responsible for valuable data which must be secure.
- Security issues could result in unauthorised access to and abuse of resources, e.g. a large number of compute nodes with a 'pretty good' internet connection.
- \rightarrow IT security is of high importance!
- GridKa security measures include:
 - Intrusion detection on all 'exposed' systems,
 - e.g. CEs, login nodes etc.
 - Methods to immediately block users on all systems
 - Experts in computer security and forensics on site
 - Collaboration with other Grid sites: an incident there could be a threat to GridKa also! (e.g. stolen ssh-key or Grid certificate)

(Future) challenges

(Future) challenges

Long term (>20 years) storage of experiments' data

- Copy data to new storage media types
- Things to consider:
 - Lifetime of media?
 - Special software required? (protocols, file systems, ...)

- Still evolving computing models
 - IT techniques improve every year
 - Experiments change computing models based on their experiences and (new) technical possibilities.
 - · but need to access and compute old data as well

e.g. Cloud computing

(Future) challenges

Technology trends, e.g.

- Trend to more CPU cores instead of higher clock frequencies
 - Higher LAN bandwidth required
 - More simultaneous file accesses
 - Multithreaded jobs?
- Network bandwidth grows faster than local I/O
 - 100Gbit/s WAN on the horizon
 - New possibilities arise → influence on computing models?

SIMPLY EXPLAINED - PART 17:

CLOUD COMPUTING

Outlook

- GridKa project phase 3 has started.
 - The LHC is taking data!
 - Are we finished? NO!
- There's still a lot to do:
 - New technologies to be tested and deployed.
 - New services to be installed.
 - Computing models will change.
 - Keep GridKa state-of-the-art!

