GRID COMPUTING FOR LHC

Johannes Elmsheuser

Ludwig-Maximilians-Universität München

08 September 2010/Karlsruhe

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

STANDARD MODEL OF PARTICLE PHYSICS

- Building blocks of matter and their interactions - describe well current observations, but missing pieces
- Higher energy: Reproduce conditions of early Universe
- TeV energy scale: Expect breakdown of current calculations unless a new interaction or phenomenon appears
- Many theories, but need data to distinguish between them

THE LHC AND EXPERIMENTS

4 LHC EXPERIMENTS

DETECTORS BUILT AND OPERATED BY A LARGE TEAM

Worldwide Collaboration of over 3000 physicists and engineers in ATLAS and CMS each + similar in LHCb and ALICE

RECORDED LUMINOSITY SO FAR 2010

- ullet 2010: 30-50 ${
 m pb^{-1}}$, "Re-discover" Standard Model: J/ ψ , W, Z, top
- 2011: up to 1 fb⁻¹ at $\sqrt{s} = 7(8)$ TeV

COLLISIONS AT THE LHC

Proton-Proton-Kollisionen 2835 Teilchenbündel (Bunch)

10¹¹ Protonen / Bunch Kollisionsrate 40 MHz (25 ns)

Schwerpunktsenergie 14 TeV (= 7400 x Ruheenergie der kollidierenden Teilchen)

Schwerpunktsenergie der kollidierenden Quarks und Gluonen bis einige TeV

~25 pp-Kollisionen pro Bunch-Kollision

Interessante Ereignisse: 10⁻⁹ – 10⁻¹¹ unterdrückt!

Trigger and Eventsizes

CHALLENGES IN DATA ANALYSIS

Data volumes

LHC experiments produce and store several PetaBytes/year

CPUs

 Event complexity (large number of channels) and number of users demands: at least 100000 fast CPUs based on computing model

Software

The experiments have complex software environment and framework

Connectivity

• Data should be available 24/7 at a high bandwidth

AVERAGE ANALYSIS AT LHC I

Higgs-Search:
$$H \to WW^{(*)} \to \mu^+ \nu_\mu \mu^- \bar{\nu}_\mu$$
 für $1 \, \mathrm{fb}^{-1}$

Monte Carlo events needed:

- 4 mass points: $m_H = 130 190 \,\mathrm{GeV}$: $100 \mathrm{k} + 500 \mathrm{k}$ Systematic studies
- Background: Z/γ^* : 2M, $t\bar{t}$: 500k, WW+WZ+ZZ: 200k, W+jets: 1M
- Total: 4.3M
- Time for simulation: 200h @ 10000 CPUs with 0.5h/event (no overhead)

Data:

- 10⁹ Events/year
- ullet pprox 50d time for reconstruction @ 10000 CPUs with 45s/event

AVERAGE ANALYSE AT LHC II

Analysis:

- 10⁶ data events from trigger and skim pre-selection
- Estimated time:
 - 1 week MC+data at 1 CPU with 10Hz
 - 4h MC+data at 1000 CPUs (Tier2-share)
 - Optimization of analysis demands much more time

Scaling up:

- Assume 2000 physicist with same analysis
- Time: 3h at 100000 CPUs
- Shown analysis is not the most time consuming
- · Analysis with jets need much more CPU-time
- · All given time: without additional overhead

GRID INFRASTUCTURES

Heterogeneous grid environment based on 3 grid infrastructures:

- e.g. 3 major ATLAS Grid areas:
 - Production System (Panda): centralized MC simulation and Data reconstruction
 - Distributed Data Managment (DQ2): centralized data movement
 - Distributed User Analysis: de-centralized individual analysis

Grid Infrastructure

What is needed - some grid components:

WORLDWIDE RESOURCES

EXPERIMENT MODELS AND TIER STRUCTURE

- Models all based on the MONARC tiered model of 10 years ago
- Several significant variations, however

ATLAS PRODUCTION SYSTEM JOBS - LAST YEAR

Up to 50k simulaneous jobs - structure related to SW releases and simulation campaigns

EVENT DATA MODEL: ATLAS

Refining the data by: Add higher level info, Skin, Thin, Slim

DATA DISTRIBUTION: ATLAS

 \approx 80 Tier1/2/3 sites managed by DQ2 right now

CMS Data processing, transfer and analysis

Data Processing, Transfer and Analysis Activities

Excellent experience so far: the whole offline and computing organization + GRID infrastructure performing very well.

Data transfers 2010

Data transfer capability today able to manage much higher bandwidths than expected and planned

Data transfer rates per week in 2010

Data transfers 2010

Data transfer capability today able to manage much higher bandwidths than expected and planned

Data transfer rates per day in 2010

ATLAS DATA TRANSFERS

Total throughput of ATLAS data through the Grid: 1 Jan - 31 July 2010

GRID JOB SUBMISSION

Naive assumption: Grid \approx large batch system

- Provide complicated job configuration for Workload Management
 System
- Find suitable experiment software, installed in the Grid (100 CEs, 30 Software versions)
- Locate the data on different storage elements
- Job splitting, monitoring and book-keeping
- etc.

→ Need for automation and integration of various different components

Several ways lead into the Grid!

GRID SOFTWARE IN THE LHC EXPERIMENTS

Every experiment has built own system on top of grid middleware:

- Grid infrastructure middleware different workflows
- work-arounds for grid middleware problems
- Often batch-like analysis, Alice uses PROOF in addition

Similar SW stack in experiments:

- SW environement in C/C++ and Root
- Analysis-Grid-Tools in script language (Python)
- Grid data transfers (SRM, FTS)
- Workload Management (glite WMS)

Similar Ansatz, but experiment dependent:

- Crab (CMS), Ganga (LHCb/ATLAS)
- Various monitoring packages
- Pilot Job Workload Management:
 - e.g. Dirac (LHCb), Panda (ATLAS), Alien (Alice))
- Data managment:
 - e.g. Phedex (CMS), DQ2 (ATLAS)

ATLAS DISTRIBUTED ANALYSIS

Data is centrally being distributed by DQ2 - Jobs go to data

DISTRIBUTED ANALYSIS: GANGA

How to combine all different components: Job scheduler/manager: GANGA

Job Scheduling

Job Push mode

- Dependent on information system and site status
- Decentralized
- Better control of site policies
- Ganga: LCG and NG backend

Job Pull mode

- Workarounds for some Grid problems
- Data pre-staging
- Panda clients or Ganga Panda backend

EXAMPLE JOB WORKFLOW

Number of analysis users and jobs I

Number of analysis jobs II

ATLAS: Panda DA Resource Usage 2010 (N Jobs Weekly) N Finished N Failed 2.000,000 1,500,000 0 Week number

- ullet Compare ATLAS number with daily \sim 50-100k production jobs
- Since start of 7 TeV collisions large increase of jobs and users

CURRENT USER PROBLEMS AND SUPPORT

User support is very important but time consuming

Central ticketing system for site or grid middleware probleme: GGUS

- Site or experiment experts try to solve problems
- Often ,,one-way" communication

Support mailing list for analysis tools

- Central discussion board for ,,all" problems
- Dicussion of several people
- E.g. in ATLAS and LHCb:
 - Before: only developers as experts very time consuming
 - Now: experiment shift teams with shift credits
 - Very busy mailing list
 - Hope: user-to-user support similar to open-source projekts
- Sites are more stable but still day to day glitches

Infrastructure Tests - Analysis stress tests

ATLAS is/has been testing sites with very high automatic generated analysis load: HammerCloud http://hammercloud.cern.ch/

Now also available of CMS and soon for LHCb Differences Analysis vs. MC Production:

- ,,unorganized" user analysis vs. ,,organized" MC production
- User Analysis puts much higher load on SE compared to CPU dominated simulation

Tests of different work-flows:

- Sequential AOD analysis of MC data
- Sequential cosmics analysis with DB/Frontier/Squid access

Some highlights:

- Analysis tools generally stable and reliable
- Some weak spots detected in site infrastructures, especially in input file access mode lots of tuning potential

RESOURCE EVOLUTION

PROSPECTS AND EVOLUTIONS

- Infrastructure demonstrated to be able to support LHC data processing and analysis
- Spin off in different areas
- A reliable and robust service of many components neccessary
- Significant operational infrastructure behind it
- Adapt to future technologies:
 - Improve data storage and data access
 - multi-core CPUs
 - Virtualisation
- Network is much better than initially anticipated
 - Rethink data access models
- Experiments have truly distributed models