AAI, Certificates and SLCS
login to the Grid

Andres Aeschlimann SWITCH
Outline

1. AAI
2. X.509 certificates
3. Use of X.509 certificates in Grid technology
4. AAI and Grids
5. Summary
Introduction

• Starting point:
 • Distributed infrastructure

• Problem:
 • How do you manage users?
 • Solution: Authentication and Authorization Infrastructure (AAI)

• Definition of authentication and authorization
 • **Authentication**: Process of ensuring a credential is valid and belongs to the individual that presents it.
 • **Authorization**: Process of checking that a person has the rights to perform an operation. Authorization can be issued based on several criteria, such as, for example,
 • the identity of the person or
 • attributes provided about the person by a trusted third party.
AAl: Authentication and Authorization Infrastructure

AAl solves the old problem of access control to resources

There are various other technologies in use - their usefulness depends on the underlying infrastructure

1. Crusader Castle
2. League of Nations
3. Federated Identity
Crusader Castle

Appropriate for few, non-mobile users
• Tedious user registration at all resources
• Unreliable and outdated user data at resources
• Different login processes
• Many different passwords
• Many resources not protected due to difficulties
• Often IP-based authorization
• Costly implementation of inter-institutional access
League of Nations

Standardized Credentials (International Conference on Passports 1920)

X.509 credentials

- User registration process with CA
- User has one credential to present to resources
- authN and authZ at resource
- User has to manage credential
- Standard use in grids (IGTF)
- Delegation mechanism
Federated Identity Management

- No user registration and user data maintenance at resource needed
- Single login process for the users
- Many new resources available for the users
- Enlarged user communities for resources
- Efficient implementation of inter-institutional access
Federated Identity Management

Shibboleth

- open source
- internet2
- SAML
- Web-based Single Sign-on
 - authN at Identity Provider
 - authZ at Service Provider
 based on user’s attributes as provided by IdP
- Privacy
SWITCHaai: Authentication and Authorization Infrastructure of Switzerland

• SWITCHaai: AAI of Switzerland: provides every user of the Swiss academic community an identity that is backed by the user’s home organization (i.e. his/her university)

• Today, over 400 services use AAI to authenticate and authorize users

• Every university of Switzerland is member of AAI
SWITCHaai Federation Spring 2011

AAI enabled accounts

- 97% coverage in higher education

Home Organizations

- Graph showing the growth of home organizations from 2004 to 2010.

Resources

- Graph showing the growth of resources from 2004 to 2010.
Demo
More about AAI

http://www.switch.ch/aai/
Outline

1. AAI
2. X.509 certificates
3. Use of X.509 certificates in Grid technology
4. AAI and Grids
5. Summary
How do I get a certificate?

1. Create a key pair (using some algorithm)
2. Send the public key to a Certificate Authority
 1. CA must obtain also personal information
 2. CA must perform an identity vetting
3. CA issues certificate with a given lifetime

4. Note:
 1. CA may revoke your certificate (in case of abuse)
 2. Certificate must be renewed once it expires
 3. and ????

YOU MUST PROTECT YOUR PRIVATE KEY
X.509 alias ISO/IEC/ITU 9594-9

• X.509 is ITU Standard:
 • Defines a **certificate format**
 • Latest standard: X.509 version 3 certificate format

• X.509 certificate includes:
 • User identification (someone’s subject name)
 • Public key
 • Validity period
 • A “signature” from a Certificate Authority (CA) that:
 • Proves that the certificate came from the CA.
 • Vouches for the subject name
 • Vouches for the binding of the public key to the subject
DEMO: openssl commands

Where do I find more information on how to handle certificates?

http://www.switch.ch/grid/certificates.openssl/
X.509 Certificate Example (1)

openssl x509 –in ~/.globus/usercert.pem –text

Certificate:
 Data:
 Version: 3 (0x2) X509.3 – with extensions
 Serial Number: 199 (0xc7)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=CH, O=CERN, OU=GRID, CN=CERN CA Issuer CA
 Validity
 Not Before: Sep 25 10:33:05 2008 GMT long term certificate
 Not After : Sep 24 10:33:05 2009 GMT
 Subject: O=Grid, O=CERN, OU=cern.ch, CN=Joe User user identification
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 [
 [...]

SwiNG
X.509 Certificate Example (2)

X509v3 extensions:

- X509v3 Basic Constraints: critical
- CA:FALSE
- X509v3 Issuer Alternative Name: email:service-grid-ca@cern.ch
- X509v3 Certificate Policies: Policy: 1.3.6.1.4.1.96.10.1.2.1
- Netscape Cert Type: SSL Client, S/MIME, Object Signing
- Netscape Base Url: http://service-grid-ca.web.cern.ch/service-grid-ca/
- Signature Algorithm: md5WithRSAEncryption
- Signature on the information
CA - Certification Authority

The role of the CA is to manage the certificate life cycle: create, store, renew, revoke
Treasing the CAs

Nothing hinders you to set up your own CA and issue certificates

 Getting others to trust you is the hard problem!

Trust anchors: the CAs that we more or less trust unconditionally

 Granularity: 1 CA per country

 Primarily used in production grids for research purposes

See www.gridpma.org
Where are those certificates?

User certificates:
$HOME/.globus
 usercert.pem, userkey.pem

Server certificates:
/etc/grid-security/
 hostcert.pem, hostkey.pem
 certificates # IGTF bundle, many small files

Scripts:
 IGTFO as part of the grid software# e.g. rpm, YAIM
 fetch-crl # updates the CRLs
How to protect your private key?

• File permissions on the private key
 – Only readable by owner

• Choose a “good” passphrase
 – Many characters (>14)
 – Not only letters, but also numbers and #@_&%$

• Keep track on which hosts you have put your private key

• Don’t import it into browsers that you don’t use all the time

• Remember: *Anybody* with access to your private key can impersonate you
Outline

1. AAI
2. X.509 certificates
3. Use of X.509 certificates in Grid technology
4. AAI and Grids
5. Summary
Single sign-on and delegation

- Jobs require access to **multiple resources**

- To authenticate with your certificate directly you would have to **type a passphrase every time**

- Need to automate access to other resources: **Authenticate Once**

- Important for complex applications that need to use Grid resources:
 - Enables easy coordination of varied resources
 - Enables automation of process
 - Allows remote processes and resources to act on user’s behalf - also known as **delegation**

In the Grid Security Infrastructure today, this is solved by **proxy certificates**

- A temporary key pair
- In a temporary certificate signed by your ‘long term’ private key
- Valid for a limited time (default: 12 hours)
Delegation

Note: private key never leaves the host
Proxy Certificates

1. create key pair
 - private key and X.509

2. send CSR (with public key)
 - public
 - private

3. issue X.509 with
 - DN: CN=Donald/CN=PROXY
 - signed with proxy
 - pX.509

4. return ppX.509
 - ppX.509
 - DN: CN=Donald/CN=PROXY/CN=PROXY

SwiNG
Delegation and limited proxy

Delegation = remote creation of a (second level) proxy credential

- Agents and brokers act on behalf of users with (a subset of) their rights
- This leads to a push model with proxies you don’t know beforehand where your task will end up

Allows remote process to authenticate on behalf of the user

- Remote process “impersonates” the user

The client can elect to delegate a “limited proxy”

- Each service decides whether it will allow authentication with a limited proxy
Proxy renewal

Proxy has limited lifetime (default is 12 h)
 Bad idea to have longer proxy

However, a grid task might need to use a proxy for a much longer time
 Grid jobs in HEP Data Challenges on LCG last up to 2 days

A dedicated service can renew automatically the proxy
But

Something is missing…….
VO information

Remember: user acts as member of a VO

VO may also add information
 Group memberships
 Roles

Example: VO PlatypusLovers
 Groups: HavePlatypus, BeenInAustralia
 Role: FinancialOfficer, PlatypusCaretaker

De-facto Standard: VOMS
 Virtual organization membership service
 One VOMS instance per VO
VO Information in VOMS

Groups and role information is issued as an Attribute Certificate (AC) that is put as an extension into the user’s proxy certificate.

All groups are listed, ordering matters
Role information is present only if the users requests it

AC contains list of “fully qualified attribute names “ FQAN

Example:
/vo_name/group1/Role=administrator
/vo_name/group2
/vo_name/group2/subgroup2

First FQAN is primary FQAN → special role in job handling
Outline

1. AAI
2. X.509 certificates
3. Use of X.509 certificates in Grid technology
4. AAI and Grids
5. Summary
Problems of Certificates

• Certificates have their drawbacks:
 – Provisioning certificates to the user is cumbersome
 – Certificates require a lot of knowledge from the user
 – Private keys must be properly secured

• Conclusion from a usability point of view:

 Easiest is to hide the certificates from the user!
Issuing Certificates based on AAI

Idea:
As every student of Switzerland already has an AAI credential, issue certificates based on AAI
→ identity vetting is already been done by the university

Consequence: user friendly way to obtain certificate
No special identity vetting needed
Certificates simply expire once they are no longer used

Short-lived credential service (SLCS): issues Grid certificates to a member of SWITCHaai based upon successful authentication at his/her home organization
Easy grid access: SLCS Certificates

Online CA issuing short-lived X.509 certificates based upon authentication at Shibboleth Identity Provider

Shibboleth attributes used in DN

In production and accredited by EuGridPMA
SLCS Certificates based on AAI

Certificate lifetime < 1 mio sec (~ 11 days)
Easy generation from the command line based on authentication to AAI
Certificates simply expire after 11 days and can be reissued many times → easy to use for the user
SLCS service is operated by SWITCH – see http://www.switch.ch/grid/slcs
Outline

1. Introduction
2. Virtual Organizations
3. A sloppy introduction into cryptography
4. X.509 certificates
5. Use of X.509 certificates in Grid technology
6. AAI and Grids
7. Summary
Summary

Basics of cryptography

Access to the Grid through proxy certificates

VO Information:
 groups and roles
 Issued as attribute certificate (AC) containing FQANs

Delegation mechanism

Issuance of SLCS certificates through AAI authentication
Links, references

PKI and general internet security:

Certificate handling:
http://www.switch.ch/grid/certificates/openssl/

SLCS certificates: http://www.switch.ch/grid/slcs

EGEE security architecture:
https://edms.cern.ch/file/935451/2/