
SGS11: Swiss Grid School 2011

ARC for developers:
Implementing High-Throughput Computing

solutions on the Grid

Sergio Maffioletti
Grid Computing Competence Center GC3

University of ZurichUniversity of Zurich
sergio.maffioletti@gc3.uzh.ch

1

Why development is needed ?y p

 Most of the current scientific research is dealing with very
large number of data to analyzelarge number of data to analyze

 This is not just parameter sweep usecase, but in general
Hight Throughput Computing (HTC)Hight Throughput Computing (HTC)

 Tools are needed to efficiently address both computing and
data handling issuesdata handling issues

 Single operation client tools are not always adequate to
cope with the high throughput requirements of even a singlecope with the high throughput requirements of even a single
experiment
Dedicated end to end tools should be developed to tailor Dedicated end-to-end tools should be developed to tailor
end-user requirements (no general solution that fits for all)

2

Why development is needed ?y p

 ARC provides API interfaces that could be used to address
the computing and data handling part of any end-to-endthe computing and data handling part of any end to end
solution that aim to leverage grid capabilities

 ARC1 provides a revised API model centered around plugins
(it provides plugings for ARC0 ARC1 and CreamCE(it provides plugings for ARC0, ARC1 and CreamCE
compute elements for example)

 Python bindings turned out to be extremely practical for rapid
development of prototype HTC solutionsdevelopment of prototype HTC solutions

3

What is the added value instead of my beloved
bash/perl scripts ?bash/perl scripts ?

 Using the API allows to directly control and use the data structures
ARC providesARC provides
 like a list of computing resources – ExecutionTargets -, or

easily create several JobDescription(s) from a templateeasily create several JobDescription(s) from a template
 It allows to directly manipulate these data structures and/or

integrate them in a control driver scriptintegrate them in a control driver script
 for example, it is very easy to obtain a list of Job objects each

of them representing a submitted job)p g j)
 It allows to have a finer grained control on such data structure

 like optimized bulk submission minimizing the ldapsearches like optimized bulk submission minimizing the ldapsearches
on remote ends

 It allows to implement own allocation and resubmission strategies

4

p g

A t i l hi h th h t ?A typical high-throughput use case?

 Run a generic Application on a range of different inputs;
where each input is a different file (or a set of files).where each input is a different file (or a set of files).

 Then collect output files and post-process them, e.g.,
gather some statisticsgather some statistics.

 Typically implemented by a set of sh or Perl scripts to y y y
drive execution on a local cluster.

5

A programming examplep g g p

From a folder containing 20 .inp input files
S h f th th t h ti l ttSearch for the one that has a particular pattern
Each file will be a job submitted
Driver script should handle:
1. All preparatory steps (create one JobDescription per input p p y p (p p p

file)
2. Bulk submission
3. Global control on all submitted jobs
4 Result retrieval4. Result retrieval
5. Check which job found the pattern

6

Basic ARC libraries data structures

1. User configuration
2 R di d I f ti t i l2. Resource discovery and Information retrieval
3. Job submission
4. Job Management

7

Resource Discovery and Information Retrievaly

 The new libarcclient resource discovery and information
retrieval component consists of three classes; theretrieval component consists of three classes; the
TargetGenerator, the TargetRetriever and the
ExecutionTarget. g

 TargetRetriever is a base class for further grid middleware TargetRetriever is a base class for further grid middleware
specic specialization (plugin)

8

Resource Discovery and Information Retrievaly

9

TargetGeneratorg

 The TargetGenerator class is the umbrella class for resource
discovery and information retrieval (index servers anddiscovery and information retrieval (index servers and
execution services).

 The TargetGenerator loads TargetRetriever plugins (which The TargetGenerator loads TargetRetriever plugins (which
implements the actual information retrieval) from URL
objects found in the UserConfig object j g j

arc GetTargetGenerator(usercfg 0)arc.GetTargetGenerator(_usercfg, 0)

10

RetrieveExecutionTargets(self)
GetExecutionTargets(self)

Retrieve available execution services.

The endpoints specified in the UserConfig object passed to this
bj t ill b d t t i i f ti b t tiobject will be used to retrieve information about execution

services (ExecutionTarget objects).

The discovery and information retrieval of targets is carried out
i ll l th d t d th If d i t iin parallel threads to speed up the process. If a endpoint is a
index service each execution service registered will be queried.

List of Execution targets can be accessed by invoking

11

GetExecutionTargets()

Job Submission

Job submission starts with the resource discovery and target
preparationpreparation.
Only when a list of possible targets is available the job
description is read and brokering method is applied to rank thedescription is read and brokering method is applied to rank the
ExecutionTargets according to the JobDescription's
requirements.q

Note: this allows to submit bulk of jobs without having to re-Note: this allows to submit bulk of jobs without having to re-
perform the resource discovery.

12

Job Submission

13

Job Submission

 The TargetGenerator has prepared a list of
ExecutionTargetsExecutionTargets.

 In order to rank the found services (ExecutionTargets) the
Broker needs detailed knowledge about the jobBroker needs detailed knowledge about the job
requirements, thus the JobDescription is passed as input to
the brokering process.g p

Broker PreFilterTargets([ExecutionTargets]Broker.PreFilterTargets([ExecutionTargets],
JobDescription)

Broker GetBestTaget()Broker.GetBestTaget()

14

Job Submission

Target.Submit(arc.UserConfig, JobDescription, arc.Job)

Returns True/False and modifies arc.Job object

15

Job Managementg

 Once a job is submitted, job related information (job
identication string cluster etc) is stored in a local XMLidentication string, cluster etc.) is stored in a local XML
(default: $HOME/.arc/jobs.xml).

 This file may contain jobs running on completely different
grid flavours and thus job management should be handledgrid flavours, and thus job management should be handled
using plugins similar to resource discovery and job
submission.

The job managing plugin is called the JobController and it is The job managing plugin is called the JobController and it is
supported by the JobSupervisor and Job classes.

16

Job Managementg

17

Job Managementg

jobsupervisor = arc.JobSupervisor(_usercfg, [])
jobsupervisor.GetJobControllers()

j bli t fil i t i l d b th J bS i t id tif thjoblist file is extensively used by the JobSupervisor to identify the
JobController flavours which are to be loaded.

Jobs can then be managed through respective JobControllers

18

sgs2011_arc_htc.pyg _ _ py

import User configuration parameters

usercfg = arc UserConfig("" "")_usercfg = arc.UserConfig("", "")

_usercfg.ClearSelectedServices()

fixed values for the purpose of the
exercise

arc_version = 'ARC0'_

host_endpoint = 'aio.grid.zoo' # ARC_CE
hostname

add computing service

19

add computing service

_usercfg.AddServices(["%s:%s" %

(i

sgs2011_arc_htc.pyg _ _ py

_target_generator = arc.TargetGenerator(_usercfg, 0)

this call spawns remore researches

target generator.RetrieveExecutionTargets()_target_generator.RetrieveExecutionTargets()

targets = target generator GetExecutionTargets()targets _target_generator.GetExecutionTargets()

20

sgs2011_arc_htc.pyg _ _ py

jd = arc.JobDescription()

jd.Application.Executable.Name = "/bin/grep"jd.Application.Executable.Name /bin/grep

jd.Application.Executable.arguments = ["-1", “sgs2011”,
“inputfile”]

jd.Application.Output = "sgs2011.out"

jd.Application.Error = "sgs2011.err"

jd.Application.LogDir = ".arc"

jd.Resources.SlotRequirement.NumberOfSlots.max = 1

jd.Resources.IndividualPhysicalMemory.max = 100

jd.Resources.TotalWallTime.range.max = 60j g

21

sgs2011_arc_htc.pyg _ _ py

jd_list = []

iterate over input folder and create one
jobdescription per file

for filename in os.listdir(input_folder):

xrsl = xrsl_template + "(InputFiles=('inputfile'
'%s'))" %
os.path.abspath(os.path.join(input_folder,filename)) +
"(jobname='%s')" % filename(j)

jd = arc.JobDescription()jd arc.JobDescription()

if not arc.JobDescription.Parse(jd, xrsl,
jobdesclang):

22

log.error("Failed creating JobDescription
with xrls '%s'" % xrsl)

sgs2011_arc_htc.pyg _ _ py

ld = arc.BrokerLoader()

broker = ld.load("Random", usercfg)broker ld.load(Random , _usercfg)

j = arc.Job()

for jd in jd_list:

broker PreFilterTargets(targets jd)broker.PreFilterTargets(targets, jd)

target = broker.GetBestTarget()

if not target:if not target:

continue # no target found for this
JobDescriptionp

submitted = target.Submit(_usercfg, jd, j)

if submitted:

23

job_list[j.JobID.str()] = j

sgs2011_arc_htc.pyg _ _ py

_jobsupervisor = arc.JobSupervisor(_usercfg, [])

controllers = jobsupervisor.GetJobControllers()_controllers _jobsupervisor.GetJobControllers()

...

for c in controllers:for c in _controllers:

c.GetJobInformation()

joblist = c GetJobs()joblist c.GetJobs()

...

Note joblist is a list of arc Job object# Note, joblist is a list of arc.Job object

for job in joblist:
Check and manipulate individual jobs# Check and manipulate individual jobs

24

sgs2011_arc_htc.pyg _ _ py

download_dir = os.path.join(os.getcwd(),job.Name)

download file list =download_file_list
controller.GetDownloadFiles(job.JobID)

source_url = arc.URL(job.JobID.str())

destination_url = arc.URL(download_dir)

...

for remote_file in download_file_list:_ _ _

...

controller.ARCCopyFile(source url,destination url):py _ _

25

Existing projectsg p j

 Atlas control tower

 Ganga

 GC3Pie
 Created at the University of Zurich's Grid Computing Competency

Center (GC3) http://www.gc3.uzh.ch/
 Open-source, hosted at http://gc3pie.googlecode.com

gc3pie@googlegroups.com

26

SGS11: Swiss Grid School 2011

ARC for sysadmins.y
The tutorial

Sergio Maffioletti UZH/GC3
Marko Nikkimaki HES-SOMarko Nikkimaki HES SO
Sigve Haug UniBe/LHEP

27

SGS11: Swiss Grid School 2011

ARC for sysadmins.y
the tutorial

Sergio Maffioletti UZH/GC3
Marko Nikkimaki HES-SOMarko Nikkimaki HES SO
Sigve Haug UniBe/LHEP

28

SGS11: Swiss Grid School 2011

I id ARCInside ARC:
Client toolsClient tools

Sergio MaffiolettiSergio Maffioletti
Grid Computing Competence Center GC3

University of Zurich
sergio.maffioletti@gc3.uzh.chg @g

29

ARC Computing Service

• Computing resources: Grid-enabled via ARC layer on head node (front-end):
C t G idFTP f ll th i ti

Picture taken from “ARC meet SwiNG” workshop 2008

• Custom GridFTP server for all the communications
• Grid Manager handles job management upon client request, interfaces to LRMS
• Performs most data movement (stage in and out), cache management
• Publishes resource and job information via LDAP

30

Publishes resource and job information via LDAP

ARC for sysaminds – SGS2011, Sep 05 – 09, 2011. Karlsruhe

ARC Client

Lightweight User Interface with the built-in Resource Broker
• A set of command line utilities• A set of command line utilities
• Minimal and simple
• Under the hood: resource discovery, matchmaking, optimization,

job submissionjob submission
• Complete support for single job management
• Basic functionality for multiple job management

B ilt ARCLIB• Built upon ARCLIB

Standalone binary client package possible to be installed in user y p g p
space

31

ARC for users: Getting started

1. Obtain access to a User Interface (ARC client software)

2. Request a user certificate from a Certification Authority

3. Deploy the signed certificate on the User Interfacep y g

4. Create grid proxy

5. Write a job description

6. Submit jobj

7. Monitor the progress of the job

8. Fetch the results

32

User Interface

arcproxy – handle grid/voms proxy creation
arcsub – find suitable resources and submit a job
arcstat – check the status of jobs and resources
arccat – display stdout, stderr of a running job
arcget – retrieve the results of a finished job
arckill – stop a job
arcclean – delete a job from a computing resourcea cc ea de ete a job o a co put g esou ce
arcsync – find user’s jobs
arcls – list files on a storage resource or in job’s sandboxarcls list files on a storage resource or in job s sandbox
arccp – transfer files to and from cluster and storages

33

Basic Job Workflow

• Create proxy: arcproxy

• Writing a job descrption: job.xrsl

S b itti th j b b• Submitting the job: arcsub

• Checking the status: arcstat/arccatg

• Retrieving the result files: arcget

34

Installing ARC Client

• Required to submit jobs to ARC
C ld b d l d d f htt //ft / d id /d l d• Could be downloaded from http://ftp/nordugrid.org/download

• Various binary packages as well as source code
Standalone package ailable for installing ARC client in ser• Standalone package vailable for installing ARC client in user
space

• Binaries available for system-wide installation

yum install nordugrid arc client# yum install nordugrid-arc-client

35

ARC Client ConARC Client Con
guration

The default behaviour of an ARC client can be con
d b if i lt ti l fgured by specifying alternative values for some

parameters in the client con
gurationguration
le. The
le is called client conf and is located in directory arcle is called client.conf and is located in directory .arc
in user's home area:
$HOME/.arc/client.conf$HOME/.arc/client.conf

36

Writing a Job Description File

• Resource Specification Language (RSL) files are used to
specify job requirements and parameters for submissionspecify job requirements and parameters for submission

• ARC uses an extended language (xRSL) based on the Globus RSL

• Similar to scripts for local queuing systems, but includes some
additional attributes

• Job name
• Executable location and parametersExecutable location and parameters
• Runtime Environment requirements

37

xRSL Example

• helloWorld.sh

#!/bin/sh

echo “Hello World”

• helloWorld.xrsl

& (executable=helloWorld.sh)

(jobname=hellogrid)

(stdout=std.out)

(stderr=std.err)

(gmlog=gridlog)

(hit t i686)(architecture=i686)

(cputime=10)

(memory=32)

38

(memory 32)

Basic Operations

Submit the job
arcsub -d DEBUG -c ARC0:aio.grid.zoo –f helloWorld.xrsl

=> Job submitted with jobid
gsiftp://aio.grid.zoo:2811/jobs/455611239779372141331307

• Query the status of the submitted job
arcstat hellogrid# arcstat hellogrid

Job gsiftp://aio.grid.zoo:2811/jobs/455611239779372141331307

Jobname: hellogrid

Status: INLRMS:Q

• Most common status values are: ACCEPTED, PREPARING,
SUBMITTING INLRMS Q INLRMS R EXECUTED FINISHEDSUBMITTING, INLRMS:Q, INLRMS:R, EXECUTED, FINISHED

39

Basic Operations

• Print the job output
arccat hellogrid

• Shows the standard output of the job
• This can be done also during job execution

• Fetch the results
arcget hellogrid

arcget: downloading files to
/home/theuser/results/455611239779372141331307/home/theuser/results/455611239779372141331307

arcget: download successful - deleting job from
gatekeeper.

40

I id ARCInside ARC:
Runtime EnvironmentsRuntime Environments

Sergio MaffiolettiSergio Maffioletti
Grid Computing Competence Center GC3

University of Zurich
sergio.maffioletti@gc3.uzh.chg @g

41

Runtime environment - RTE

• Software packages which are pre-installed on a computing resource and
made available through ARCg

• Avoid the need of sending the binaries together with the job
• Allows local platform specific optimizationp p p

• Provides to the users a common environment for the specific application

• Implemented by shell scripts which initialize the environment and areImplemented by shell scripts which initialize the environment and are
placed in specific directory

• Required RTE can be specified in the job description file:
(runtimeenvironment=APPS/LIFE/TANDEM-09.08)

• Every infrastructure should provide a registry for the supported RTEs and
th ti f ll dthe conventions followed

42

Runtime environment - RTE

Deployment and RTE: APPS/LIFE/TANDEM-09.08

..
export TANDEM LOCATION=$application base pathp _ pp _ _p
Export TANDEM_TAXONOMY=$TANDEM_LOCATION/bin

Set the specific mdrun commands for this system.# Set the specific mdrun commands for this system.
export TANDEMRUN="$TANDEM_LOCATION/bin/tandem.exe”
..

43

Runtime environment - RTE

In xrsl job description file

(runtimeenvironment="APPS/LIFE/TANDEM-09.08")(runtimeenvironment APPS/LIFE/TANDEM 09.08)

Within job execution

..
$TANDEMRUN input.xml
..

44

I id ARCInside ARC:
Sysadmin tipsSysadmin tips

Sergio MaffiolettiSergio Maffioletti
Grid Computing Competence Center GC3

University of Zurich
sergio.maffioletti@gc3.uzh.chg @g

45

ARC for sysadmins

Installation of ARC packages:
F t b d Li di t ib ti RPM f ARC d f• For most rpm-based Linux distributions, RPMs for ARC and for
most of its dependencies are provide through nordugrid
repositoryrepository

• Possible to install via apt or yum
yum install nordugrid-arc-compute-elementy g p

• Provided deb packages

46

ARC system requirements

• ARC can be see as made of four main service type:
ARC CE i t f ith th ti f• ARC_CE: interface with the computing farm

• ARC_UI: client interface
ARC SE interface ith the storage farm• ARC_SE: interface with the storage farm

• ARC_GIIS: top level information system

• Each of them can be installed either separately or altogether on
the same nodethe same node

• RPMs are provided for ARC server and ARC client
• ARC server includes components for CE,SE,GIISp , ,
• System administrator decides which service configure and

enable through configuration files

47

ARC_CE
• Given a computing farm controlled and managed by a Local Resource• Given a computing farm controlled and managed by a Local Resource

Management System (LRMS)

• ARC CE is the interface to the LRMS• ARC_CE is the interface to the LRMS

• ARC_CE needs to be an authorized client of the LRMS

• ARC_CE needs to share at least one filesystem with the rest of the
computing farm

• Submission to the LRMS is done by ARC_CE on behalf of the users

• ARC CE checks the status of the LRMS jobs and retrieves the resultsARC_CE checks the status of the LRMS jobs and retrieves the results
on behalf of the user

• Results form the LRMS submission are stored on ARC CE for manualResults form the LRMS submission are stored on ARC_CE for manual
retrieval or transfer to a storage resource

48

49

Resource selection

• ARC_UI embodies a resource broker that is responsible of selecting
the resources to match the requirements of a submitting job
B k fi t i th GIIS it k t t li t f it• Broker first queries the GIIS it knows to get a list of sites

• Then queries the sites to check whether the user is authorized to the
sitesite

• Then filters the resources according to the ARC_job’s resource
specifications

• Then ranks the filtered resources according to its policy (random,
fastest cpus, …)

• The top rank resource is selectedThe top rank resource is selected
• Submission to selected resource

50

Lifecycle of a job on ARC_CE

• An ARC_job is submitted from ARC_UI
• On ARC_CE, the Gridftp server accept the request
• Authentication and authorization (GSI,VOMS)

• Request is mapped to local user account
• An ARC jobID is created (this will be the unique reference for the job)• An ARC_jobID is created (this will be the unique reference for the job)
• A session folder is created within $sessiondir (as specified in arc.conf)

named as the ARC_jobID
• Downloader process is started to fetch input data
• Input data are stored in ARC_job’s session dir
• submit-$LRMS-job script is started to translate ARC_job into a local

submission
• There are several LRMS backend: PBS SGE LL LSF CondorThere are several LRMS backend: PBS, SGE, LL, LSF, Condor,…

51

Lifecycle of a job on ARC_CE

• Translated job is submitted to LRMS using local user account
• Lifecycle of LRMS job is supervised by grid-managerLifecycle of LRMS_job is supervised by grid manager

• It executes scripts like: scan-$LRMS-job
• Information system updates information on the status of the jobInformation system updates information on the status of the job

(INLRMS:R means submitted to LRMS and running there)
• Once LRMS_job is terminated, uploader process takes care of

staging results to a designated storage resource (if specified in
xrsl)
ARC j b t t i t d FINISHED• ARC_job status is reported as FINISHED

52

Log and information files

• Location of log files can be specified in arc.conf
• Each service has its own section where individual log can beEach service has its own section where individual log can be

configured (location, rotation policy, verbosity level)

53

Griftpd

default configuration:default configuration:
log location: /var/log/arc/gridftpd.log
control: /etc/init.d/gridftpd [start, status, stop]control: /etc/init.d/gridftpd [start, status, stop]
daemon: gridftpd
Open port on: 2811 (default)Open port on: 2811 (default)
FTP PASS mode: 9000 – 9500 (default)

54

a-rex

default configuration:default configuration:
log location: /var/log/arc/grid-manager.log
control: /etc/init.d/a-rex [start, status, stop]control: /etc/init.d/a rex [start, status, stop]
daemon: arched
open port on: 443 (when Web Service Interface activated)open port on: 443 (when Web Service Interface activated)

handles $controldir (/var/spool/nordugrid/jobstatus)handles $controldir (/var/spool/nordugrid/jobstatus)
uses several perl and bash scripts located in /usr/shar/arc

submit-$LRMS-job, scan-$LRMS-job, ...submit $LRMS job, scan $LRMS job, ...

55

grid-infosys

default configuration:default configuration:
log location:

/var/log/arc/infoprovider.log/var/log/arc/infoprovider.log
/var/log/arc/inforegistration.log
/var/log/arc/bdii/bdii-update.log/var/log/arc/bdii/bdii update.log
/var/log/bdii/bdii.log

control: /etc/init.d/grid-infosys [start, status, stop]
Daemons: slapd, ldapadd, bdii-fwDaemons: slapd, ldapadd, bdii fw
open port: 2135
Ldif files: var/run/arc /var/run/bdii

56

Ldif files: var/run/arc /var/run/bdii

57

ARC for sysadmins.
The tutorial

58

