

Data Storage

Paul Millar dCache

Overview

- Introducing storage
- How storage is used
- Challenges and future directions

(Magnetic) Hard Disks

Disk enclosures

RAID systems

Types of RAID

RAID 1

(Local) File systems

Ext3, Ext4, XFS, ...

(Local) File systems

ZFS, BtrFS

R OSFNIME 116162

Cluster filesystems

Storage Element

Storage Element

I ME 116162

R OSF N

Example of redirection

62

161

OSF N

ď

Protocols

- Transferring data
 - Redirecting the client is important!
 - LAN access (for worker nodes):
 - NFS v4.1, dcap, rfio, xrootd, (HTTP?)
 - WAN access (for transferring data)
 - GridFTP, HTTP, WebDAV, (xrootd?)
- Management
 - -SRM v2.2
- Standardisation:

OSF N

Grid storage

- Lots of sites (so, lots of SEs)
- Data appears in multiple locations
- Current Grid-level services:
 - FTS: moving data
 - File Catalogues: finding the files
- Experiment provides:
 - File grouping (data sets)
 - Access framework (software)
 - Unfortunately it adds layer of indirection between end-users and sites(!!)

OSF N

Grid Storage: catalogues

2011-09-05

I ME 116162

OSF N

ď

Grid problems

- Communication:
 - VOs have many storage provides
 - Sites (typically) have many VOs
 - VOs have many users
- Diagnosing problems is hard
 - A networking problem could involve:
 - end-user and VO,
 - src and dest storage elements (the sites),
 - FTS, catalogue(s), network providers, ..
- Use of non-standards doesn't help!

OSFI

Monte Carlo

Diagram from Dr. G. Stewart

2011-09-05

Data taking

Diagram from Dr. G. Stewart

2011-09-05

R OSFNIME 116162

Reconstruction

Diagram from Dr. G. Stewart

2011-09-05

Chaotic analysis

Diagram from P. Fuhrmann

2011-09-05

I ME 116162

OSF N

ď

Grid storage in context

WLCG site storage capacity

62

+ some non-WLCG sites

Distributed storage

Sites + IBM Almaden

Current challenges and Future directions

Dynamic data placement

- Example from ATLAS
 - Data was copied based on what people thought would be useful
 - Turns out they didn't know!
 - Lots of data copied but never read.
- Try replicating based on use:
 - Example policy:

When a T2 pulling in a file from T1, make two additional replicas elsewhere.

– So far, working pretty well.

OSFN

Standardisation

- HEP storage requirements aren't that enormous any more.
 - Others are finding solutions, don't reinvent the wheel!
- EMI: we're switching from Gridspecific protocols to standards
 - GSI to SSL/TLS,
 - GridFTP to HTTP/WebDAV,
 - LAN custom protocols to NFS v4.1

The death of Monach

- Monach is a rigid Tier structure.
 - -T0, T1, T2.
 - Rational: network will be a bottleneck
- Reality:
 - Prolifically of classifications:
 - Non-geo. T1, "Large" T2, T3, Exp. "Clouds"
 - Backbone network isn't a bottleneck
- Gradual relaxing of rules
- Eventually: any file from anywhere.

Global namespace

I ME 116162

R OSF N

Future of tape

- Only really HEP that uses TAPE storage in-band.
 - elsewhere used for archiving data.
- Still need tape for archive, but..
 - Data processing move to (almost) completely on disk
 - Fetching from tape will be like a copy
 - Tape will be "write once, read never"

Disks: where are SSDs?

- SSDs are FLASH memory in a blockdevice format
 - Much faster than Mag. Disks for reading (writing is slower)
 - Predicted introduction in data centres hasn't happened (yet)
- Why?
 - Errors are sudden, unpredictable.
 - They're still expensive
 - Software support isn't here (yet)

OSF N

Satellites

- Structure storage
 - SSDs for random access (analysis)
 - Mag. disks for "archival storage"
- Support?
 - In filesystems: ZFS
 - In cluster filesystems: GPFS
 - In storage systems: EOS
 - and dCache (soon)

Disks: new technologies

Diagram from "Storage Class Memory, Technology, and Uses" David A. Pease, IBM Almaden Research Centre.

2011-09-05

I ME 116162

OSF N

ď

Data integrity

- More data means more likely to see corruption
- Detecting corruption:
 - Disk (T10 DIF)
 - RAID systems (scrubbing)
 - Filesystems (ZFS, BtrFS)
 - Storage Element (file-level checksums when uploading; scrubbing)
 - Tape: (proposed)

What is EMI?

- EMI is an EU-funded project to provide Grid software
 - Combines four technologies (ARC, dCache, gLite, UNICORE)
 - Single responsibility allowing
 - Mix-n-match usage.
 - Consolidation.
- First major release, EMI-1, is now available

Thank you!

EMI is partially funded by the European Commission under Grant Agreement RI-261611

(Magnetic) Hard disks

- Block device (addressable units of fixed size)
- Characteristics
 - Streaming is fast
 - Random access is slow
 - The more concurrent activity, the poorer the overall throughput
- Failure modes are well understood
 - J-curve bath-tub (wrong!)
 - See Google Con
- 2011-09-05- SMART!

OSF N

Storage: from small to big

- Disk
- RAID
- Filesystems
- Tape
- Cluster filesystems
- HSM
- Storage element
- Grid

Tape / disk separation

- Motivations:
 - Avoid "accidental staging"
- Want clear separation (separately addressable) between disk and tape.
 - Store data is either disk or tape, never both
- Part of a move away from including tape as part of normal data-flow.

HSM storage

- Files migrate to slower media
- Based on policies or explicit commands
- Commercially available (TSM, SAMFS/QFS, ..)

Networking

- 10G is now che use
 - Sites are (or h
 - Needs CAT6a (
- 40G and 100G

 too expensive
 could be used

