Data Storage

Paul Millar
dCache
Overview

• Introducing storage
• How storage is used
• Challenges and future directions
(Magnetic) Hard Disks
Tape systems
Disk enclosures
RAID systems
Types of RAID

RAID 0
- Disk 0
 - A1
 - A3
 - A5
 - A7
- Disk 1
 - A2
 - A4
 - A6
 - A8

RAID 1
- Disk 0
 - A1
 - A2
 - A3
 - A4
- Disk 1
 - A1
 - A2
 - A3
 - A4

RAID 5
- Disk 0
 - A1
 - B1
 - C1
 - Dp
- Disk 1
 - A2
 - B2
 - C2
 - D1
- Disk 2
 - A3
 - Bp
 - Cp
 - D2
- Disk 3
 - Ap
 - B3
 - Cp
 - D3

RAID 6
- Disk 0
 - A1
 - B1
 - C1
 - Dp
 - Eq
- Disk 1
 - A2
 - B2
 - Cp
 - Dq
 - E1
- Disk 2
 - A3
 - Bp
 - Cp
 - D1
 - E2
- Disk 3
 - Ap
 - Bq
 - Cq
 - D2
 - E3
- Disk 4
 - Aq
 - B3
 - C3
 - D3
 - Ep
(Local) File systems

Ext3, Ext4, XFS, ...

LOCAL FILE SYSTEM

BLOCK DEVICE
(Local) File systems

ZFS, Btrfs
Cluster filesystems
Storage Element
Storage Element
Example of redirection

1. Client requests file creation.
2. Door creates namespace entry
3. Best pool is selected.
4. Pool told to get read.
5. Client told open() is successful.
6. Client sends data either via the door or (better) directly to pool
Protocols

• Transferring data
 – Redirecting the client is important!
 – LAN access (for worker nodes):
 • **NFS v4.1**, dcap, rfio, xrootd, (HTTP?)
 – WAN access (for transferring data)
 • GridFTP, **HTTP**, WebDAV, (xrootd?)

• Management
 – SRM v2.2

• Standardisation:
 – GSI vs SSL/TLS
Grid storage

- Lots of sites (so, lots of SEs)
- Data appears in multiple locations
- Current Grid-level services:
 - FTS: moving data
 - File Catalogues: finding the files
- Experiment provides:
 - File grouping (data sets)
 - Access framework (software)
 - Unfortunately it adds layer of indirection between end-users and sites(!!)
Grid Storage: catalogues

Diagram from P. Fuhrmann
Grid problems

• Communication:
 – VOs have many storage provides
 – Sites (typically) have many VOs
 • VOs have many users

• Diagnosing problems is hard
 – A networking problem could involve:
 • end-user and VO,
 • src and dest storage elements (the sites),
 • FTS, catalogue(s), network providers, ..

• Use of non-standards doesn't help!
Monte Carlo

Diagram from Dr. G. Stewart
Data taking

Diagram from Dr. G. Stewart

2011-09-05
Reconstruction

Diagram from Dr. G. Stewart
Chaotic analysis

Diagram from P. Fuhrmann
Grid storage in context
WLCG site storage capacity

- CERN
- BNL
- FNAL
- IN2P3
- KIT
- CNAF
- PIC

Petabytes

Total
Used
+ some non-WLCG sites

![Bar chart showing data storage in petabytes for various sites including CERN, BNL, FNAL, IN2P3, KIT, CNAF, WayBackMachine, PIC, and WoW. The chart includes both total and used data storage values.](chart.png)
Distributed storage

![Graph showing distributed storage for WLCG, Amazon S3, and Google/Gmail. The graph indicates the total and used storage in petabytes.]
Sites + IBM Almaden

The chart illustrates the data storage at various sites, including IBM Almaden, CERN, BNL, FNAL, IN2P3, KIT, CNAF, WayBackMachine, PIC, and WoW. The x-axis represents different sites, while the y-axis shows petabytes of storage. Each site has a bar indicating the total and used storage capacity.
Current challenges and Future directions
Dynamic data placement

• Example from ATLAS
 – Data was copied based on what people thought would be useful
 – Turns out they didn't know!
 • Lots of data copied but never read.

• Try replicating based on use:
 – Example policy:
 When a T2 pulling in a file from T1, make two additional replicas elsewhere.
 – So far, working pretty well.
Standardisation

• HEP storage requirements aren't that enormous any more.
 – Others are finding solutions, don't reinvent the wheel!

• EMI: we're switching from Grid-specific protocols to standards
 – GSI to SSL/TLS,
 – GridFTP to HTTP/WebDAV,
 – LAN custom protocols to NFS v4.1
The death of Monach

• Monach is a rigid Tier structure.
 – T0, T1, T2.
 – Rational: network will be a bottleneck

• Reality:
 – Prolifically of classifications:
 • Non-geo. T1, “Large” T2, T3, Exp. “Clouds”
 – Backbone network isn't a bottleneck

• Gradual relaxing of rules

• Eventually: any file from anywhere.
Global namespace

1. Global Redirector
2. Ask all SE’s if not in cache
3. (1)
4. (2)
5. (3)
6. (2)
7. (2)
8. (4)
9. (5)
Future of tape

• Only really HEP that uses TAPE storage in-band.
 – elsewhere used for archiving data.
• Still need tape for archive, but..
 – Data processing move to (almost) completely on disk
 – Fetching from tape will be like a copy
 – Tape will be “write once, read never”
Disks: where are SSDs?

- SSDs are FLASH memory in a block-device format
 - Much faster than Mag. Disks for reading (writing is slower)
 - Predicted introduction in data centres hasn't happened (yet)

- Why?
 - Errors are sudden, unpredictable.
 - They're still expensive
 - Software support isn't here (yet)
Satellites

• Structure storage
 – SSDs for random access (analysis)
 – Mag. disks for “archival storage”

• Support?
 – In filesystems: ZFS
 – In cluster filesystems: GPFS
 – In storage systems: EOS
 • and dCache (soon)
Disks: new technologies

Diagram from “Storage Class Memory, Technology, and Uses” David A. Pease, IBM Almaden Research Centre.
Data integrity

• More data means more likely to see corruption

• Detecting corruption:
 – Disk (T10 DIF)
 – RAID systems (scrubbing)
 – Filesystems (ZFS, BtrFS)
 – Storage Element (file-level checksums when uploading; scrubbing)
 – Tape: (proposed)
What is EMI?

• EMI is an EU-funded project to provide Grid software
 – Combines four technologies (ARC, dCache, gLite, UNICORE)
 – Single responsibility allowing
 • Mix-n-match usage.
 • Consolidation.

• First major release, EMI-1, is now available
Thank you!

EMI is partially funded by the European Commission under Grant Agreement RI-261611
(Magnetic) Hard disks

• Block device (addressable units of fixed size)

• Characteristics
 • Streaming is fast
 • Random access is slow
 • The more concurrent activity, the poorer the overall throughput

• Failure modes are well understood
 – J-curve bath-tub (wrong!)
 – See Google Con
 – SMART!
Storage: from small to big

- Disk
- RAID
- Filesystems
- Tape
- Cluster filesystems
- HSM
- Storage element
- Grid
Tape / disk separation

• Motivations:
 – Avoid “accidental staging”

• Want clear separation (separately addressable) between disk and tape.
 – Store data is either disk or tape, never both

• Part of a move away from including tape as part of normal data-flow.
HSM storage

- Files migrate to slower media
- Based on policies or explicit commands
- Commercially available (TSM, SAMFS/QFS, ..)

Networking

- 10G is now cheap to use
 - Sites are (or have) rolled out 10G
 - Needs CAT6a (or CAT6)

- 40G and 100G MUX exist
 - too expensive
 - could be used for switch interconnect