Incidents and Forensics
Tobias Dussa ● GridKa School 2011
This part addresses the following questions:

- What is an IT security incident?
- What to do if an incident occurs?
- What *not* to do?

It does *not* address:

- Operational aspects of an incident.
- Legal implications of an incident.

(Some yucky problems will be pointed out though.)
Incidents – Evidence

Source: Unknown (the vast spaces of the Internet).
For the purposes of this talk, an IT security incident
- is an event
- involving an IT system
- that has either
 - direct or
 - indirect implications
- on the security of
 - the above or
 - any other
IT system.
Incidents – Examples

Obvious incidents:

- **User-level intrusion:**
 - Compromised user account.
 - Compromised service; recent example: `exim`.

- **Root-level intrusion:**
 - Compromised root account.
 - Compromised root-level service; example: Linux kernel.

Not-so-obvious (potential) incidents:

- Web server defacement.
- Hard drive replacement due to failure.
- (...) *append to suit your own paranoia.*
As a general rule of thumb: \textit{Detection is not trivial.}

- Detection partially depends on the attacker’s stupidity: The dumber the attacker, the easier is detection.
- Some traces are unavoidable though:
 - Host logs.
 - Firewall logs, NAT logs, router logs.
 - Netflow data.
- Centralized collection and analysis helps a lot.
- Outbound network traffic is equally important.
- (\textit{Caveat: Beware of legal issues – data protection!})
“So you’ve got yourself an incident.”

- There is an EGI Incident Response Procedure; available as a regular document and in condensed form as a print-out checklist.
- For EGI site folks: *It’s not just a good idea, it’s the law.* The EGI IR Procedure is mandatory.
- For all other folks: *It’s not just a good idea, it’s a really good idea.* Not mandatory, obviously, but still a very good procedure.
Incidents – Handling (2)

- Phase 1 – Discovery. *Spread the word.* If applicable, inform
 - your local site security officer,
 - your National Grid Infrastructure security officer,
 - your network uplink provider’s security officer,
 - the EGI CSIRT Duty Contact.
 - This does not mean “tell the whole world!”

- Phase 2 – Containment. *Isolate the affected host(s).*
 - *Do NOT* just pull the network cables!
 - Prevent users from logging into the machine.
 - Prevent new jobs to be run on the machine.
Phase 3 – Confirmation. Verify you’re not seeing a glitch.
- Make sure you’re seeing what you think you’re seeing.
- If possible: See to your security people for assistance.

Phase 4 – Downtime Announcement. Let your users know.
- People will want to know if there’s a problem.
- Informing them will keep them off your back.
- This does not mean “tell them every detail!”
Phase 5 – Investigation. *Go get them!*

- Collect evidence as swiftly as possible; see the forensics part.
- Talk to your security people!
- If you are an EGI site: Follow up on EGI CSIRT requests immediately.
- If necessary, reiterate earlier phases.
Phase 6 – Debriefing. *Tell people what you have learnt!*

- Write up a summary of what happened.
- Help others by letting them know what went wrong.
- For EGI sites: The debriefing must be done within one month.

Phase 7 – Restoration. *All systems back to normal, Captain!*

- Restore the affected systems.
- Resume normal operation, BUT
- fix the original problem(s), obviously.
To wrap up:

- It is VERY helpful to have a plan to work along.
- Communicate! Let others know what’s happening.
- Talk to security people whenever you are unsure.
- **CAVEAT:** As soon as it looks like your boss would like to see the attacker in jail: **STOP** what you are doing immediately and call the police.
So *why* does everybody need to know I screwed up?

- This is *NOT* about pointing fingers.
- Informing others:
 - Helps them avoiding your mistakes.
 - Helps people to get the bigger picture quicker.
 - Enables faster recognition of a problem or a trend.
 - Likely will get them to share their lessons learnt with you, too.
I Am Not A Lawyer. However:

- Be aware that depending on your jurisdiction, serious problems might arise as soon as things turn legal.
- You might break the “chain of custody” or otherwise render pieces of evidence non-usable in a court of law.
- You might even get into personal trouble by acquiring illegal software or data.
- As always, if you are unsure, go see someone who should know better (in this case, a lawyer).
Actual incident:
- Large linux cluster was compromised at root level.
- Several hundred users affected.
- Detection was very quick: less than an hour after the break-in.
- KIT-CERT was alerted immediately.
Case Study – Detection

- All host log files were collected centrally.
- On the central server, the logs are analyzed for anomalies.
- If such anomalies are found, notification is sent to the admin crew.
- We got a bit lucky with the timing, but the general idea works very well.
Case Study – Impact

- Large machine with many users.
- In particular, lots of users external to KIT.
- Downtime is a VERY political issue.
Handling was almost done by the textbook.

- Phase 1 – Detection: Covered that.
- Phase 2 – Confirmation: KIT-CERT was called in, the break-in was confirmed.
- Phase 3 – Containment: Users were locked out of the affected systems.
- Phase 4 – Downtime announcement: Users were notified of “ongoing security operations.”
- So far, all within four five hours of the breakin.
Phase 4a – Normal operation restoration: After evidence collection, the admin crew restored normal operation.

Phase 5 – Analysis: Admin crew and KIT-CERT worked together and put together a timeline of what has happened.

Phase 6 – Debriefing: KIT-CERT prepared a report and handed over the facts to the legal department.
During analysis, it was discovered that the attacker came from a different institute.
The institute in question was contacted by KIT-CERT.
The affected machines were also taken into custody and analyzed.
The entire incident handling used up quite a bit of resources.
This part addresses the following questions:

- Why forensic analysis?
- Where and how to gather evidence?
- How to analyze evidence data?

It does not address:

- How to contain damage?
- What to communicate when to whom?
- How to recover from an incident?
Source: Still unknown.
What Is Forensic Analysis Good For?

To assess and answer several important questions about an incident:

- Where did the attacker come from?
- How was access gained?
- What damage was done?
- What other machines were affected?
- ... and many more related questions.
Data Sources for Forensic Investigations

- Broad classes of data sources:
 1. Highly volatile (e.g., CPU registers),
 2. Volatile (e.g., RAM),
 3. Static (e.g., hard drives), and
 4. Highly static (e.g., archive tapes).

- More volatile evidence must be gathered and preserved first, if possible.

- Obviously, not all classes available or applicable in every instance.
Find the Right Machine

Usually, this is the first thing to do.

1. Collect all relevant network-related data:
 - NAT data,
 - proxy data,
 - netflow data,
 - and so on.

 No problem if there are log files, interesting if not (live NAT tables etc.).

2. Correlate data to find your suspect host, if any.
So We Have a Suspect . . .

. . . or at least a suspect machine. Now what to do?

1. Gather general information and evidence:
 - Running processes,
 - open network connections,
 - who is logged on,
 - who was logged on,
 - mounted devices
 - and their mountpoints,
 - etc.

2. Look if there is anything suspect.
What to do with your suspect (process):

1. Stop the process (do *not* terminate it!).
2. Collect and secure:
 - the binary being executed,
 - its core memory,
 - its shared memory regions, if any,
 - its file handles,
 - other volatile data.
Finally, collect less volatile stuff:

- If possible and sensible, power off the machine and grab the hard drive.
- If not possible or sensible, at the very least collect the following stuff:
 - All related log files,
 - any files involved in the incident,
 - actually, if possible, the entire file system.
After Compiling, Interpretation!

Take a close look at the collected data. Some pointers:

- Inspect suspect executables (with \texttt{strings}, \texttt{hexdump}, \texttt{gdb}, \texttt{rec}, \texttt{IDAPro}, \ldots).
- Look at core dumps (using \texttt{gdb}).
- Grep through log files and the like.
- Check files’ MD5 sums against the known-good list.
- Perform further filesystem analysis, for instance with \texttt{autopsy} or \texttt{rkhunter}.
- If necessary, iterate.
Main sources of insight:
- Compromised hosts’ hard drives.
- (Centrally-collected) host logs.
- Process-accounting data (huge!).
- Router netflow data.

Attacker had already left, so no dynamic data to be gathered.
Case Study – Gathering (2)

But we also made mistakes:

- We failed to collect some dynamic evidence.
- We were unable to rip images of some hard drives (hardware RAID controllers).
- One of the first things done during confirmation of the incident was something like:

 `find / -mtime -2`
Case Study – Timelining

- All evidence needs to be put in the proper sequence.
- This sounds easier than it is: chances are different logs use a vastly different timestamp format.
- We wrote a script for normalization, but nowadays there is better software, for instance log2timeline.
- Careful with timestamps: time zone woes, jitter!
Attacker compromised a user account on a different machine.

Said user had access to the cluster.

Attacker could log in, impersonating the user.

Exploiting an unpatched kernel vulnerability, the attacker was able to get root access. This already triggered suspicious kernel messages that were not picked up!
Attacker then installed a backdoor by giving a system user a password.
This triggered another log line, which WAS picked up by the admin crew. Kudos!
Attacker then snooped around for a bit, decided that this machine was not interesting to him apparently, and left.
Twenty minutes later, the break-in was detected.
Attacker tried to log in to his backdoor on this and another (neighboring) cluster later on.
Case Study – Lessons Learnt

- Collect your logs centrally and independently.
- Understand your logs and its timestamps.
- Be prepared to normalize and analyze logs.
- Be prepared to dump and analyze disk images.
- Have a checklist prepared so that you don’t
 - forget stuff or
 - do stuff in the wrong order.
Incidents are a lot of work:
- detection,
- handling,
- alleviating.

Forensics is very time-consuming and difficult to get right.

The better the preparation, the easier the work.

Share your information and ask for help!
That’s It!

Questions?
Answers!

PGP-Key 0x236636AE; fingerprint:
0D29 63BE DB07 1264 DD1C
EFE0 34E7 F72A 2366 36AE