

Cloud Computing

CER

Department

(and virtualization at CERN)

Ulrich Schwickerath et al

With special thanks to the many contributors to this presentation!

GridKa School 2011, Karlsruhe

Disclaimer: largely personal view of things

CERN IT Departmen CH-1211 Genève 23 Switzerland www.cern.ch/i

Outline

CERN**IT** Department

What is this all about ? Definition, Key features and manifestations Is it useful ? For what ? For whom ? Is it relevant for HEP community

An laaS cook book Ingredients and recipe Caveats and work to do

The practice Results from a prototype setup at CERN

Conclusions

Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet).

CERN

Manifestation: XaaS

CERN**IT** Department

Software as a Service SaaS

Platform as a Service PaaS

Infrastructure as a Service laaS

On demand access to applications

Service-now.com On Demand IT Service Management

Platform for building & delivering Web applications

flexiscale

GÜGRID

5

Thanks to Tony Cass

The key question is ...

What is the relevance for HEP community ?

Disclaimer: personal and site biased perspective, with a focus on laaS

Resource provider challenges

- Increasing demand for computing and storage resources
- More (new) **users** to support
- More communities to support (VOs), with different requirements
- Conflicting software requirements for applications and new hardware

Resource provider boundary conditions

Department

- Decreasing resources for developments and maintenance
- Constant or decreasing number of people to provide computing services

Necessity to optimize the use of existing resources

What are the challenges ?

CERN

VOs often know their users better than the sites do

VOs know best where their active data is

VOs often unhappy with sites scheduling decisions

Example: Pilot job frameworks:

- Essentially a work-around for VOs to do the job scheduling themselves
- Causes some overhead for the sites who have to maintain new services
 - glExec, SCAS/Argus
 - UID switching within a single user job

... and the new technologies

CERN

... and the new technologies

CERN

... and the new technologies

Virtual machine management systems

Department

Central place to manage your VMs in the computer center Some complemented by services required for Clouds

How can virtualization help?

Resource usage optimization

- Many dedicated machines
- Mainly managed by VOs
- Specific applications
- Low CPU and I/O usage
- Large reliability required

Department

Current CERN solution for consolidation using CERN Virtual Infrastructure (CVI)

- · Specialized fully redundant hardware with shared dedicated storage via iSCSI
- Support for live migration for services
- Selected solution: Microsoft Hyper-V + SCVMM as orchestrator
- Completed by Self-Service on cheap hardware
- Different configurations: enclosures+shared storage, disk servers, worker nodes

Virtualization for service consolidation is reality, wide spread and routine

Department

Example: CERN CVI

CVI status (April 2011)

Number of Virtual Machines per Operating System

Thanks to Jan van Eldik et al

CERN

April 2011: CVI 1250 VMs, 8 Customer groups Department

Thanks to Jan van Eldik et al

How can virtualization help?

CERN

Can we gain elsewhere ?

CERN

Department

Example: CERN Computer Center in September 2011

Batch processing resources

- Managed by the site
- Grid Worker node setup
- Lots of identical machines
- CPU, I/O and network demanding

CER

Department

- Cheap hardware
- individual failures OK

Challenging use case due to scale and performance requirements!

What is(are) the problem(s) to solve ?

Department

Optimize Job throughput Job success rate Minimize Operational overhead Downtime for updates Require Performance and speed

The price to pay for virtualization CERN

HS06 CPU benchmark test

I/O Benchmarking

CERN

Department

Worst case scenario: 1VM/physical core running IOzone, 8 threads on bare metal

I/O Benchmarking

- Analysis by Qiulan Huang (Chinese academy of science), December 2010
 - Caching off, SLC5 based KVM hypervisors
 - LV raw device, imported into the VM
 - 1-8 VM per hypervisor with one IOZone benchmark each
 - Bare metal test with 1-8 concurrent IOZone threads
 - 20% penalty, write performance penalty is worse
- New analysis ongoing by Belmiro Moreira (CERN)
 - Trying qcow2 and compare to LV
 - Based on SLC6.1 KVM
 - No final results yet

Network Benchmarking

Iperf with TCP window size of 256k and 60s test time

CERN

Key ideas for prototype at CERN

- Isolation: one job per virtual machine only
- Limited Live-Time for each worker node
- **Be agile:** always start from the latest image with the newest software
- **Be demand driven:** if possible, adjust running VMs to current or expected demand

Virtualization of batch resources CERNIT

How to provide the **right mix** of environments matching needs ?

Batch worker nodes dynamically joining LSF

Virtualization of batch resources

Automate intrusive interventions: kernel, afs, glibc updates

Notes:

- NEW virtual machines always start with the latest image
- Image A and Image B can correspond to different OS versions

CER

Cooking up the infrastructure

CERN

Department

Ups ... looks like an laaS infrastructure, doesn't it ?

Image creation:

CER

Department

Software setup can be derived from centrally managed computers

Image distribution:

currently Bit-torrent in use

VM orchestrator:

tested **OpenNebula** and **Platform ISF**, interested in **OpenStack**

Virtualization technology

CER

Department

Started with XEN, moved to KVM in 2010

Image treatment:

Prestaged images, using LVM snapshot

Public cloud interface(s)

Tests with ONE EC2 access using ATLAS hammer-cloud tests (selected users only)

Image distribution

Image distribution performance

32 CERN

VM provisioning (ONE)

Time

CERN

Is this a cloud infrastructure

Oh, well, maybe yes, it depends ...

CERN

Is this a cloud infrastructure

Is this a cloud ???

CER

Department

Does it matter ?

... as long as it does what we need

It has shares some features with the Cloud definition.

Yes, no, yes, depends ... maybe

Virtual batch at CERN

CERN**IT** Department

In production since December 2010 at CERN

Batch virtualization: caveat

The scalability challenge

- The bulk of applications are single threaded.
- Therefore, a full virtualization of current CERN batch resources translates into
 - > 31,000 VMs in a single batch instance

Feasibility studies

CERI

Feasibility studies

CERN

Batch virtualization scalability

Simply virtualizing the batch farm, based on a 1Core=1+VM model and a flat batch farm is unlikely to scale as needed

Need to do something more clever ...

Going cloud ...

CERN**T** Department

Physical Resources

Public cloud access tests

CERN**IT** Department

Thanks to Daniel van der Ster

A more general laaS model ?

CERN

- Cloud computing is certainly a nice new technology, and technology is maturing
- First attempts to apply it are in progress at several sites, to solve operational issues rather than to please users
- Virtualization plays a vital role in the applied models, and is already reality
- Application scalability is an issue for larger scale deployments
- Looking forward to an interesting future

Batch virtualization

Thank you!

Any questions ?