
Hadoop Tutorial
GridKa School 2011

Ahmad Hammad∗, Ariel Garćıa†

Karlsruhe Institute of Technology

September 7, 2011

Abstract

This tutorial intends to guide you through the basics of Data Intensive Comput-
ing with the Hadoop Toolkit. At the end of the course you will hopefully have an
overview and hands-on experience about the Map-Reduce computing pattern and
its Hadoop implementation, about the Hadoop filesystem HDFS, and about some
higher level tools built on top of these like the data processing language Pig.

∗hammad@kit.edu
†garcia@kit.edu

1

Contents

1 Preparation 3
1.1 Logging-in . 3
1.2 Getting aquainted with HDFS . 3

2 MapReduce I: Hadoop Streaming 5
2.1 A simple Streaming example: finding the maximum temperature 5

2.1.1 Testing the map and reduce files without Hadoop 6
2.1.2 MapReduce with Hadoop Streaming 6
2.1.3 Optional . 7

3 MapReduce II: Developing MR programs in Java 8
3.1 Finding the maximum temperature with a Java MR job 8
3.2 Optional MapReduce exercise . 8

4 MapReduce III: User defined Counters 10
4.1 Understanding the RecordParser . 10
4.2 Implementing user defined counters . 10

5 The Pig data processing language 12
5.1 Working with Pigs . 12

5.1.1 Starting the interpreter . 12
5.1.2 The Pig Latin language basics . 13

5.2 Using more realistic data . 15
5.3 A more advanced exercise . 16
5.4 Some extra Pig commands . 17

6 Extras 18
6.1 Installing your own Hadoop . 18

A Additional Information 19

2

Hands-on block 1

Preparation

1.1 Logging-in

The tutorial will be performed in an existing Hadoop installation, a cluster of 55 nodes
with a Hadoop filesystem HDFS of around 100 TB.

You should log-in via ssh into

hadoop.lsdf.kit.edu # Port 22

from the login nodes provided to you by the GridKA School:

gks-1-101.fzk.de # Port 24

gks-2-151.fzk.de

NOTE: Just use the same credentials (username and password) for both accounts.

1.2 Getting aquainted with HDFS

First we will perform some data management operations on the Hadoop Distributed
Filesystem HDFS. The commands have a strong similarity to the standard Unix/Linux
ones.

We will denote with the suffixes HFile and HDir file and folder names in the HDFS
filsystem, and use HPath for either a file or a folder. Similarly, we use LFile, LDir and
LPath for the corresponding objects in the local disk. For instance, some of the most
useful HDFS commands are the following:

hadoop fs -ls /

hadoop fs -ls myHPath

hadoop fs -cat myHFile

hadoop fs -df

hadoop fs -cp srcHFile destHPath

hadoop fs -mv srcHFile destHPath

3

hadoop fs -rm myHFile

hadoop fs -rmr myHDir

hadoop fs -du myHDir

hadoop fs -mkdir myHDir

hadoop fs -get myHFile myCopyLFile

hadoop fs -put myLFile myCopyHFile

You can get all possible fs subcommands by typing

hadoop fs

Exercises:

1. List the top level folder of the HDFS filesystem, and find the location and contents
of your HDFS user folder.

2. Find the size and the available space in the HDFS filesystem.

3. Create a new subfolder in your HDFS user directory.

4. Copy the README file from your HDFS user directory into the subfolder you just
created, and check its contents.

5. Remove the subfolder you created above.

4

Hands-on block 2

MapReduce I: Hadoop Streaming

2.1 A simple Streaming example: finding the maxi-

mum temperature

The aim of this block is to get some first-hand experience on how Hadoop MapReduce
works. We will use a simple Streaming exercise to achieve that, finding the highest
temperature for each year in a real world climate data set.

Consider the following weather data set sample:

$ cat input_local/sample.txt

0067011990999991950051507004+68750+023550FM-12+038299999V0203301N00671220001CN9999999N9+00001+99999999999

0043011990999991950051512004+68750+023550FM-12+038299999V0203201N00671220001CN9999999N9+00221+99999999999

0043011990999991950051518004+68750+023550FM-12+038299999V0203201N00261220001CN9999999N9-00111+99999999999

0043012650999991949032412004+62300+010750FM-12+048599999V0202701N00461220001CN0500001N9+01111+99999999999

0043012650999991949032418004+62300+010750FM-12+048599999V0202701N00461220001CN0500001N9+00781+99999999999

^ ^ ^

year +/- temperature quality

positions 16-19 positions 88-92 93

4 5 1

The temperature is multiplied by 10. The temperature value is considered MISSING if
is equal to +9999. The value of the quality flag indicates the quality of the measurement.
It has to match one of the following values: 0, 1, 4, 5 or 9; otherwise the temperature
value is considered invalid.

Exercise: Write two scripts in a script language of your choice (like Bash, Python) to
act as Map and Reduce functions for finding the maximum temperature for each year from
the sample weather file sample.txt. These two scripts should act as described below.

The Map:
- reads the input data from standard input STDIN line-by-line
- parses every line by: year, temperature and quality
- tests if the parsed temperature is valid. That is the case when:

temp != "+9999" and re.match("[01459]", quality) // Python code

- outputs the year and the valid temperature as a tab-separated key-value pair
string to standard output STDOUT.

5

The Reduce:
- reads data from standard input STDIN line-by-line
- splits the input line by the tab-separator to get the key and its value
- finds the maximum temperature for each year and prints it to STDOUT

2.1.1 Testing the map and reduce files without Hadoop

You can test the map and reduce scripts without using Hadoop. This helps to make clear
the programming concept. Lets first check what the map output is:

$ cd mapreduce1

$ cat ../input_local/sample.txt | ./map.py

Now you can run the complete map-reduce chain, to obtain the maximum temperature
for each year:

$ cat ../input_local/sample.txt | ./map.py | sort | ./reduce.py

2.1.2 MapReduce with Hadoop Streaming

1. Run the MapReduce Streaming job on the local file system. What is the calculated
maximum temperature? for which year?

Notice: write the following command all in one line, or use a backslash (\) at the
end of each line as shown in point 2.

$ hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-0.20.2-cdh3u0.jar

-conf ../conf/hadoop-local.xml

-input ../input_local/sample.txt

-output myLocalOutput

-mapper ./map.py

-reducer ./reduce.py

-file ./map.py

-file ./reduce.py

2. Run the MapReduce Streaming on HDFS. Where and what is the output of the
calculated max temperature of the job?

$ hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-0.20.2-cdh3u0.jar \
-input /share/data/gks2011/input/sample.txt \
-output myHdfsOutput \
-mapper ./map.py \
-reducer ./reduce.py \
-file ./map.py \
-file ./reduce.py

6

Important: Before a repeating a run for a second time you always have to delete the
output folder given with -output or you must select a new one, otherwise Hadoop will
abort the execution.

$ hadoop fs -rmr myHdfsOutput

In case of the local file sytem run:

$ rm -rf myLocalOutput

2.1.3 Optional

Can you tell how many MapTasks and ReduceTasks have been started for this MR job?

7

Hands-on block 3

MapReduce II: Developing MR
programs in Java

3.1 Finding the maximum temperature with a Java

MR job

In this block you will repeat the calculation of the previous one using a native Hadoop
MR program.

Exercise: Based on the file MyJobSkeleton.java in your mapreduce2/ folder try to
replace all question-mark placeholders (?) in the file MyJob.java to have a functioning
MapReduce Java program, that can find the max temperature for each year as described
in the previous block.

To test the program:

Create a directory for your compiled classes

$ mkdir myclasses

Compile your code

$ javac -classpath /usr/lib/hadoop/hadoop-core.jar \

-d myclasses MyJob.java

Create a jar

$ jar -cvf myjob.jar -C myclasses .

Run

$ hadoop jar myjob.jar MyJob \

/share/data/gks2011/input/sample.txt myHdfsOutput

Important: replace gs099 with your actual account name.

3.2 Optional MapReduce exercise

Run the program with the following input:

8

/share/data/gks2011/input/bigfile.txt

1. What is the size of bigfile.txt?

2. List and cat the MR output file(s)

3. How many MapTasks and ReduceTasks have been started?

4. How can you make your MapReduce job faster?

9

Hands-on block 4

MapReduce III: User defined
Counters

4.1 Understanding the RecordParser

Hadoop supports a quite sophisticated reporting framework for helping the user to keep
track of his Hadoop job status.

Exercise: In the directory mapreduce3/ you will find two Java files,

MyJobWithCounters.java

RecordParser.java

Please look into those files und understand what the RecordParser class does and how
it is used in MyJobWithCounters.java.

4.2 Implementing user defined counters

Exercise: Implement your user-defined Counters’ Enum and call the incrCounter()

method to increment the right counter at the marked places in the code. Compile, create
the jar, and run your MR job with either of the following input data:

/share/data/gks2011/input/all

/share/data/gks2011/input/bigfile.txt

What do your Counters report?

To compile the program do:

$ mkdir myclasses

$ javac -classpath /usr/lib/hadoop/hadoop-core.jar -d myclasses \

RecordParser.java MyJobWithCounters.java

10

$ jar -cvf MyJobWithCounters.jar -C myclasses .

$ hadoop jar MyJobWithCounters.jar MyJobWithCounters \

input/all outputcounts

$ hadoop jar MyJobWithCounters.jar MyJobWithCounters \

input/bigfile.txt outputcounts2

11

Hands-on block 5

The Pig data processing language

5.1 Working with Pigs

Pig is a data flow language based on Hadoop. The Pig interpreter transforms your Pig
commands into MapReduce programs which are then run by Hadoop, usually in the
cluster infrastructure, in a way completely transparent for you.

5.1.1 Starting the interpreter

The Pig interpreter (called “Grunt”) can be started in either of two modes:

local
Pig programs are executed locally, only local files can be used (no HDFS)

MapReduce
Pig programs are executed in the full Hadoop environment, with files in HDFS only

To run these modes use

pig -x local

pig -x mapreduce # Default

Note: You can also create and run Pig scripts in batch (non-interactive) mode:

pig myPigScript.pig

Exercise: Start the Grunt shell –in local mode for now– and with reduced debugging:

pig -x local -d warn

Then get aquainted with some of the Pig shell’s utility commands shown in Table 5.1.
Remember that you started the shell in local mode, therefore you will be browsing the
local filesystem –not HDFS!. Try, for instance,

12

grunt> help

grunt> pwd

grunt> fs -ls

grunt> ls

grunt> cp README-PLEASE.txt /tmp

grunt> cat /tmp/README-PLEASE.txt

grunt> fs -rm /tmp/README-PLEASE.txt

...

Utility commands
help Prints some help :-)
quit Just that
set debug [on|off] Enables verbose debugging
fs -<CMD> HDFS commands (work also for local files)
ls, cp, cat, rm, rmr, ... Same commands as above (less output)
cd Change directory

Table 5.1: Grunt shell’s utility commands

5.1.2 The Pig Latin language basics

The Pig language supports several data types: 4 scalar numeric types, 2 array types,
and 3 composite data types as shown in Table 5.2. Note the examples on the rightmost
column: “short” integers and “double floats” are the default types, otherwise the suffixes
L or F need to be used. Important for understanding the Pig language and this tutorial
are the tuples and bags.

Simple data types
int Signed 32 bit integer 117

long Signed 64 bit integer 117L

float 32-bit floating point 3.14F or 1.0E6F
double 64-bit floating point 3.14 or 1.41421E2
chararray UTF8 character array (string) "Hello world!"

bytearray Byte array (binary object)

Complex data types
tuple Ordered set of fields (1,"A",2.0)

bag Collection of tuples: unordered,
possibly different tuple types

{(1,2),(2,3)}

map Set of key value pairs: keys are
unique chararrays

[key#value]

Table 5.2: The Pig Latin data types

Having said that, let’s start “hands on” :-)

13

Exercise: Load data from a very minimal (local!) data file and learn how to peak at
the data. The data file is a minimal climate data file containing mean daily temperature
records, similar to the ones used earlier in this tutorial.

grunt> cd pig

grunt> data = LOAD ’sample-data.txt’

AS (loc:long, date:chararray, temp:float, count:int);

grunt> DUMP data;

...

grunt> part_data = LIMIT data 5;

grunt> DUMP part_data;

...

Notice how you can dump all the data or just part of it using an auxiliary variable. Can
you explain why one of the tuples in data appears as

(,YEAR_MO_DAY,,) ?

Notice also that the real processing of data in Pig only takes place when you request
some final result, for instance with DUMP or STORE. Moreover, you can also ask Pig about
variables and some “sample data”:

grunt> DESCRIBE data;

...

grunt> ILLUSTRATE data;

...

The variable (a.k.a. alias) data is a bag of tuples. The illustrate command illustrates
the variable with different sample data each time... sometimes you might see a null pointer
exception with our “unprepared” data: can you explain why?

Exercise: Now we will learn to find the maximum temperature in our small data set.

grunt> temps = FOREACH data GENERATE temp;

grunt> temps_group = GROUP temps ALL;

grunt> max_temp = FOREACH temps_group GENERATE MAX(temps);

grunt> DUMP max_temp;

(71.6)

As you see above, Pig doesn’t allow you to directly apply a function (MAX()) to your data
variables, but on a single-column bag.

Remember, Pig is not a normal programming language but a
data processing language based on MapReduce and Hadoop! This
language structure is required to allow a direct mapping of your processing
instructions to MapReduce!

Use DESCRIBE and DUMP to understand how the Pig instructions above work.

14

NOTE: if you change and reload a relation, like temps = above, you must reload also
all dependent relations (temps group, max temp) to achieve correct results!

Exercise: Repeat the exercise above but converting the temperature to degrees Celsius
instead of Fahrenheit:

TCelsius =
5

9
(TFahrenheit − 32)

Hint: you can use mathematical formulas in the “GENERATE” part of a relation, but
you cannot operate with the results of a function like MAX(). Don’t forget that numbers
without decimal dot are interpreted as integers!

Data IO commands
LOAD a 1 = LOAD ’file’ [USING function] [AS schema];

STORE STORE a 2 INTO ’folder’ [USING function];

DUMP DUMP a 3;

LIMIT a 4 = LIMIT a 3 number;

Diagnostic commands
DESCRIBE DESCRIBE a 5;

Show the schema (data types) of the relation
EXPLAIN EXPLAIN a 6;

Display the execution plan of the relation
ILLUSTRATE ILLUSTRATE a 7;

Display step by step how data is transformed (from the LOAD
to the desired relation)

5.2 Using more realistic data

Above we have used a tiny data file with 20 lines of sample data. Now we will run Pig in
MapReduce mode to process bigger files.

pig

Remember that now Pig with only allow you to use HDFS...

Exercise: Load data from a 200MB data file and repeat the above calculations. As the
data files are now not TAB-separated –as expected by default by Pig– but space-separated,
we need to explicitely tell Pig the LOAD function to use:

grunt> cd /share/data/gks2011/pig/all-years

grunt> data = LOAD ’climate-1973.txt’ USING PigStorage(’ ’)

AS (loc:long, wban:int, date:chararray,

temp:float, count:int);

grunt> part_data = LIMIT data 5;

15

grunt> DUMP part_data;

...

Check that the data was correctly loaded using the LIMIT or the ILLUSTRATE operators.

grunt> temps = FOREACH data GENERATE temp;

grunt> temps_group = GROUP temps ALL;

grunt> max_temp = FOREACH temps_group GENERATE MAX(temps);

grunt> DUMP max_temp;

(109.9)

Exercise: Repeat the above exercise measuring the time it takes to find the maximum
in that single data file, and then compare with the time it takes to process the whole
folder (13 GB instead of 200 MB). Pig can load all files in a folder at once if you pass it
a folder path:

grunt> data = LOAD ’/share/data/gks2011/pig/all-years/’

USING PigStorage(’ ’)

AS (loc:long, wban:int, date:chararray,

temp:float, count:int);

5.3 A more advanced exercise

In this realistic data set, the data is not perfect or fully cleaned up: if you look carefully,
for instance, you will see a message

Encountered Warning FIELD_DISCARDED_TYPE_CONVERSION_FAILED 7996 time(s).

This is due to the label lines mixed inside the file:

STN--- WBAN YEARMODA TEMP ...

We will remove those lines from the input data by using the FILTER operator. As the
warnings come from the castings in the LOAD operation, we now postpone the casts for a
later step, after the filter was done:

grunt> cd /share/data/gks2011/pig/all-years

grunt> data_raw = LOAD ’climate-1973.txt’ USING PigStorage(’ ’)

AS (loc, wban, date:chararray, temp, count);

grunt> data_flt = FILTER data_raw BY date != ’YEARMODA’;

grunt> data = FOREACH data_flt GENERATE (long)loc, (int)wban,

date, (float)temp, (int)count;

grunt> temps = FOREACH data GENERATE ((temp-32.0)*5.0/9.0);

grunt> temps_group = GROUP temps ALL;

grunt> max_temp = FOREACH temps_group GENERATE MAX(temps);

grunt> DUMP max_temp;

(43.27777862548828)

16

Also the mean daily temperatures were obtained from averaging a variable number of
measurements: the amount is given in the 5th column, variable count. You might want
to filter all mean values obtained with less than –say– 5 measurements out. This is left
as an exercise to the reader.

5.4 Some extra Pig commands

Some relational operators
FILTER Use it to work with tuples or rows of data
FOREACH Use it to work with columns of data
GROUP Use it to group data in a single relation
ORDER Sort a relation based on one or more fields
...

Some built-in functions
AVG Calculate the average of numeric values in a single-column bag
COUNT Calculate the number of tuples in a bag
MAX/MIN Calculate the maximum/minimum value in a single-column bag
SUM Calculate the sum of values in a single-column bag
...

17

Hands-on block 6

Extras

6.1 Installing your own Hadoop

The Hadoop community has its main online presence in:

http://hadoop.apache.org/

Although you can download the latest source code and release tarballs from that location,
we strongly suggest you to use the more production-ready Cloudera distribution:

http://www.cloudera.com/

Cloudera provides ready to use Hadoop Linux packages for several distributions, as well as
a Hadoop Installer for configuring your own Hadoop cluster, and also a VMWare appliance
preconfigured with Hadoop, Hue, HBase and more.

18

http://hadoop.apache.org/
http://www.cloudera.com/

Appendix A

Additional Information

Hadoop Homepage
Internet: http://hadoop.apache.org/

Cloudera Hadoop Distribution
Internet: http://www.cloudera.com/

Documentation
Tutorial: http://hadoop.apache.org/common/docs/r0.20.2/

mapred_tutorial.html

Hadoop API: http://hadoop.apache.org/common/docs/r0.20.2/api/

Pig: http://pig.apache.org/docs/r0.9.0/

Recommended books
Hadoop: The
Definitive Guide

Tom White, O’Reilly Media, 2010 (2nd Ed.)

Hadoop in action Chuck Lam, Manning, 2011

19

http://hadoop.apache.org/
http://www.cloudera.com/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://hadoop.apache.org/common/docs/r0.20.2/api/
http://pig.apache.org/docs/r0.9.0/

	Preparation
	Logging-in
	Getting aquainted with HDFS

	MapReduce I: Hadoop Streaming
	A simple Streaming example: finding the maximum temperature
	Testing the map and reduce files without Hadoop
	MapReduce with Hadoop Streaming
	Optional

	MapReduce II: Developing MR programs in Java
	Finding the maximum temperature with a Java MR job
	Optional MapReduce exercise

	MapReduce III: User defined Counters
	Understanding the RecordParser
	Implementing user defined counters

	The Pig data processing language
	Working with Pigs
	Starting the interpreter
	The Pig Latin language basics

	Using more realistic data
	A more advanced exercise
	Some extra Pig commands

	Extras
	Installing your own Hadoop

	Additional Information

