
Arsen Hayrapetyan Martin Vala
A. I. Alikhanyan National Scientific Laboratory, Yerevan,

Armenia;
European Organisation for Nuclear Research (CERN)

Arsen.Hayrapetyan@cern.ch

Institute of Experimental Physics,
Slovak Academy of Sciences;

European Organisation for Nuclear
Research (CERN)

Martin.Vala@cern.ch

mailto:Arsen.Hayrapetyan@cern.ch�
mailto:Martin.Vala@cern.ch�

Outline

 Introduction to ROOT

ROOT hands-on exercises

 Introduction to PROOF

PROOF hands-on exercises

GridKa School 2011, ROOT/PROOF tutorial

What is ROOT?

 Object-oriented data handling and analysis framework
 Framework: ROOT provides building blocks (root classes)

to use in your program.
 Data handling: ROOT has classes designed specifically for

storing large amount of data (GB, TB, PB) to enable
effective…

 Analysis: ROOT has complete collection of statistical,
graphical, networking and other classes that user can use
in their analysis.

 Object-oriented: ROOT is based on OO programming
paradigm and is written in C++.

GridKa School 2011, ROOT/PROOF tutorial

Who is developing ROOT?

 ROOT is an open source project started in 1995 by René
Brun and Fons Rademakers.

 The project is developed as a collaboration between:
 Full time developers:
 7 developers at CERN (PH/SFT)
 2 developers at Fermilab (US)

 Large number of part-time contributors (160 in CREDITS file
included in ROOT software package)

 A vast army of users giving feedback, comments, bug fixes
and many small contributions
 ~5,500 users registered to RootTalk forum
 ~10,000 posts per year

GridKa School 2011, ROOT/PROOF tutorial

Who is using ROOT?

 All High Energy Physics experiments in the world

 Astronomy: AstroROOT (http://www.isdc.unige.ch/astroroot/index)

 Biology: xps package for Bioconductor project

 (http://prs.ism.ac.jp/bioc/2.7/bioc/html/xps.html)

 Telecom: Regional Internet Registry for Europe, RIPE (Réseaux IP Européens)
NCC Network Coordination Centre

 (http://www.ripe.net/data-tools/stats/ttm/current-hosts/analyzing-test-box-data)

 Medical fraud detection, Finance, Insurance, etc.

ROOT is used in a many scientific fields as well as in industry.

GridKa School 2011, ROOT/PROOF tutorial

http://www.isdc.unige.ch/astroroot/index�
http://prs.ism.ac.jp/bioc/2.7/bioc/html/xps.html�
http://www.ripe.net/data-tools/stats/ttm/current-hosts/analyzing-test-box-data�

What can I do with ROOT?

You can:
 Store large amount of data (GB, TB, PB) in ROOT-

provided containers: files, trees, tuples.
 Visualise the data in one of numerous ways

provided by ROOT: histograms (1, 2 and 3-
dimensional), graphs, plots, etc.

Use physics analysis tools: physics vectors, fitting,
etc.

Write your own C++ code to process the data stored
in ROOT containers.

GridKa School 2011, ROOT/PROOF tutorial

ROOT features: Data containers
 ROOT provides different types of data containers:
 Files, folders
 Trees, Chains, etc.

GridKa School 2011, ROOT/PROOF tutorial

ROOT features: Data visualisation
 ROOT provides a range of data visualisation methods:

histograms (one- and multi-dimensional), graphs, plots (scatter,
surface, lego, …)

GridKa School 2011, ROOT/PROOF tutorial

ROOT features: GUI

The Graphical User Interface (CLI) allows you to manipulate graphical objects
(histograms, canvases, graphs, axes, plots, …) clicking on buttons and typing
values in text boxes.

GridKa School 2011, ROOT/PROOF tutorial

ROOT features: CLI

The Command Line Interface (CLI) allows you to type in the commands (C++,
root-specific, OS shell) and processes them interactively via CINT – C++
interpreter.

GridKa School 2011, ROOT/PROOF tutorial

More information on ROOT
 http://root.cern.ch
 Download
 binaries, source

 Documentation
 User’s guide

 Tutorials

 FAQ

 Mailing list

 Forum

GridKa School 2011, ROOT/PROOF tutorial

http://root.cern.ch�

ROOT Tutorial

GridKa School 2011, ROOT/PROOF tutorial

In this tutorial you will learn how to…

 Use CLI and GUI
 Create functions and histograms
 Visualise (draw) them

 Create and explore files
 Create and explore trees
 Create chains
 Analyse data contained in trees and chains on your

machine

GridKa School 2011, ROOT/PROOF tutorial

Preparations for the tutorial

 Connect to your UI login server
 Attention! Use –Y option for SSH:
 e.g. ssh –Y –p 24 gs023@gks-2-151.fzk.de

 Connect to one of machines gks-1-NNN.fzk.de
 e.g. ssh –Y gs023@gks-1-102.fzk.de
 We will tell you the number of machine you should connect to
 Verify that you have connected to proper machine running “hostname –f”

 Run the following command:
 source /opt/PEAC/sw/sl-x86_64-4.1.2/VO_PEAC/ROOT/v5-30-01/peac-env.sh
 It will set system paths to include ROOT binary and the libraries

 Start root:
 root

 You should see ROOT start screen with logo and the ROOT version: 5-30-01

GridKa School 2011, ROOT/PROOF tutorial

mailto:hs023@gks-2-151.fzk.de�
mailto:gs023@gks-1-102.fzk.de�

Macros for tutorial
 Create two directories on machines you logged in:
 mkdir macros
 mkdir workspace

 Download tutorial macros:
 cd macros
 rsync -auvr --del rsync://mon1.saske.sk/gs .
 You can root the macro codes during tutorial but we

strongly recommend you to type root code you see on
the slides!

Change to working directory
cd workspace

GridKa School 2011, ROOT/PROOF tutorial

http://mon1.saske.sk/gs�

Ex. 1: Entering and quitting CLI
To enter ROOT CLI, type the following

command on the Linux shell:
 root
 You are provided with ROOT prompt, indicated by root [N] (N is

the number of commands processed so far by root since
starting it) where you can type in C++ statements, arithmetical
expressions, and even Linux shell commands.

To quit the CLI, type the following command:
 .q

To avoid opening the graphical screen with
ROOT logo in the beginning supply ‘-l’ option:
• root -l

GridKa School 2011, ROOT/PROOF tutorial

Ex. 2: Simple commands

 You can use ROOT CLI for mathematical
calculations:
 root [] sin(0.5) * cos(0.5) + 3/4
 root [] sin(0.5) * cos(0.5) +3/4;

 C++ code snippet:
 root [] for (i=1; i<3; ++i) cout << "Hi there!\n";

 Linux shell commands should be preceded .!:
 root [] .! date

GridKa School 2011, ROOT/PROOF tutorial

Ex. 3: Drawing Graphs
 Let’s plot a graph of a simple one-dimensional

function, f(x)=2*sin(x)-6.
 ROOT has a predefined class for one-dimensional functions:

TF1. We will use it to create an object of that class and draw it.

 root [] TF1 f1(“1DFunc”, “2*sin(x)-6”, -9, 9);
 root [] f1.Draw();

 ROOT has classes for two- and three-dimensional functions,

TF2 and TF3, respectively.
 All ROOT classes start with ‘T’: TF1, TH1F, TCanvas, TTree, …
Macro: root/ex3.C

GridKa School 2011, ROOT/PROOF tutorial

Macros
 ROOT macro is a file containing source code which can

be interpreted by CINT. Macros can be unnamed or
named.
 Unnamed macro contains the code enclosed in { and }.
 You can run it using .x command on the ROOT prompt:
 root [] .x mymacro.C

 Named macro contains the code within a function having
the same name as the macro file, without extension.
 You can run it using .L command to load it and then typing the

name of the function:
 root [] .L mymacro.C
 root [] mymacro

{
 TF1* f1 = new TF1("1DFunc", "2*sin(x)-6", -9,9);
 TCanvas* c1 = new TCanvas("c1", "c1", 0, 0, 800, 600);
 f1->Draw();
}
Macro: root/unnamed_macro.C

void mymacro() {
 TF1* f1 = new TF1("1DFunc", "2*sin(x)-6", -9,9);
 TCanvas* c1 = new TCanvas("c1", "c1", 0, 0, 800, 600);
 f1->Draw();
}
Macro: root/named_macro.C

GridKa School 2011, ROOT/PROOF tutorial

Ex. 4: Histograms
 ROOT has classes for one, two and three dimensional histograms. We will use

one of them: TH1F – one dimensional histograms with float numbers. Open an
editor and type in the following lines. Save the file to create unnamed macro
gui1.C.

 Open a text editor and type in the following lines.

 Give file the name hist1.C and save it.

 Run the macro:

 root [] .x hist1.C

{
 TH1F* h1 = new TH1F("SampleHist1", "1-D Histogram", 20, -2, 2);
 h1->FillRandom("gaus", 1000000);
 TCanvas c1("SampleCanvas", "Sample Canvas", 0, 0, 800, 600);
 h1->Draw();
}
Macro: root/ex4.C

GridKa School 2011, ROOT/PROOF tutorial

Ex. 5: GUI

 You can manipulate ROOT objects using GUI. As an
exercise let us change the line thickness, add some colour
and draw grid lines to the histogram we have just created.
 Draw the histogram using macro hist1.C.
 In the histogram window select View->Editor.

GridKa School 2011, ROOT/PROOF tutorial

Trees (class TTree)
 A tree is a container for data storage

 It consists of several branches
 These can be in one or several files
 Branches are stored contiguously (split mode)

 Set of helper functions to visualize the
content (e.g. Draw, Scan)

 Compressed

Tree

Branch

Branch

Branch

point
x
y
z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File 1 "Event"

Events
GridKa School 2011, ROOT/PROOF tutorial

Events

 Events are units of data which are stored in trees
and can be processed independently from each
other (PROOF’s event-level parallelism is based on
these properties).

 In the following exercises we will create a simple
event class, then we will create a tree containing
events, inspect and process/analyse it.

GridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (1)
 Create a file TGridKaEvent.C with the following

content.

 Compile and print information about the class:
 root [] .L TGridKaEvent.C+
 root [] TGridKaEvent* event = new TGridKaEvent();
 root [] event->Dump();

#include <TObject.h>
class TGridKaEvent : public TObject {
 private:
 public:
 TGridKaEvent() : TObject() {};
 virtual ~TGridKaEvent() {};
 ClassDef(TGridKaEvent,1)
};

GridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (2)

 We are now extending the TGridKaEvent class so
that for every event it contains three variables
fX, fY, fZ with double precision
 Add 3 ‘Getter’-Functions GetX(),GetY(),GetZ()
 Initialize fX, fY, fZ in the constructor with ‘0’
 Add a method void FillGaus() which fills fX, fY, fZ

with random variables from a Gaussian
distribution
 Use gRandom->Gaus(<mean>, <sigma>)

GridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (3)
 Edit the file TGridKaEvent.C: add the lines marked

with red:
#include <Tobject.h>
#include <TRandom.h>
#include <Rtypes.h>

class TGridKaEvent : public TObject {
private:
 Double_t fX, fY, fZ;
public:
 Double_t GetX() {return fX;}
 Double_t GetY() {return fY;}
 Double_t GetZ() {return fZ;}
 void FillGaus();
 TGridKaEvent() : TObject(), fX(0) , fY(0), fZ(0) {};
 virtual ~TGridKaEvent() {};
 ClassDef(TGridKaEvent,1)
};

void TGridKaEvent::FillGaus() {
 fX = gRandom->Gaus(4,2);
 fY = gRandom->Gaus(6,3);
 fZ = gRandom->Gaus(8,4);
}

GridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (4)
 Recompile the class:
 root [] .L TGridKaEvent.C+

 Create a new Event object:

 root [] TGridKaEvent* e = new TGridKaEvent;

 Call the FillGaus() method and print the event object:
 root [] e->FillGaus();
 root [] e->Dump();
 root [] e->FillGaus();
 root [] e->Dump();

GridKa School 2011, ROOT/PROOF tutorial

Ex. 7: Creating tree (1)
 In this exercise we will create a tree and fill it with

events of class TGridKaEvent.
 We will Create a macro WriteGridKaTree.C which will create

a file gridkaevents.root to store a TTree witTGridKaEventh
events containing one branch of type. We will use function
FillGaus() to fill 1M times the event. Finally, we will fill the
tree with events and save it to the file.

GridKa School 2011, ROOT/PROOF tutorial

Ex. 7: Creating tree (2)
{
 gROOT->ProcessLine(".L TGridKaEvent.C+");

 TFile* f = TFile::Open("gridkaevents.root", "RECREATE");
 TTree* tree = new TTree("GridKa", "The GridKa Event Tree");
 TGridKaEvent* gridkaevent = new TGridKaEvent();
 TBranch* branch = tree->Branch("gridkaevent", "TGridKaEvent", &gridkaevent);

 for(Int_t i=0; i<1000000; ++i) {
 gridkaevent->FillGaus();
 tree->Fill();
 }

 tree->Write();
 f->Close();
}

GridKa School 2011, ROOT/PROOF tutorial

Ex. 8: Inspecting the content of the tree

 In this exercise we will inspect the content of the
tree i) using ls() method of the file object containing
the tree, ii) using ROOT Object Browser.

 Open the tree file for reading:
 root [] .L TGridKaEvent.C+
 root [] TFile* file = TFile::Open("gridkaevents.root");
 root [] file->ls();
 root [] Ttree* t = (Ttree*) file->Get(“GridKa”);
 root [] t->Draw(“fX”);

 Create a TBrowser & inspect the tree
 root [] new TBrowser;

root [2] file->ls();
TFile** gridkaevents.root
 TFile* gridkaevents.root
 KEY: TTree GridKa;1 The GridKa Event Tree

GridKa School 2011, ROOT/PROOF tutorial

Data analysis: Selectors (1)

 To perform tree-based data analysis one can loop over all
events in the tree and process them with Selector. The
method TTree::Process() loops over the events in the tree
and executes the code written in the Selector for every
event.
 We will create a selector to fill a histogram with the distribution

of variable fX of the class GridKaEvent which we created in
Exercise 7.

GridKa School 2011, ROOT/PROOF tutorial

Data analysis: Selectors (2)

 The class TSelector provides the following methods:
 TSelector::Begin() – This method is called once at the beginning

of the tree processing. This is the place to create the histograms
which you want to fill with the data of the tree.

 TSelector::Process() – This method is invoked for every event in
the tree. This is the place to put the analysis code and fill your
histograms.

 TSelector::Terminate() – This method is invoked at the end of
the loop over tree events. This is the place to fit and draw your
histograms.

GridKa School 2011, ROOT/PROOF tutorial

Ex. 9: Creating Selector for data analysis (1)
 In this exercise we will create selector to traverse the tree

events

 Create an empty selector macro GridKaAna.C to analyze
your tree by calling MakeSelector on the tree object:
 root [] .L TGridKaEvent.C+
 root [] TFile* f = TFile::Open(“gridkaevents.root”);
 root [] TTree* t = (TTree*) file->Get("GridKa");
 root [] t->MakeSelector("GridKaAna");
 Two files will be created in your current directory: GridKaAna.C

and GridKaAna.h. They will contain the class GridKaAna inherited
from TSelector. We need to add our code to methods Begin(),
SlaveBegin(), Process(), SlaveTerminate() and Terminate() to do
the analysis.

GridKa School 2011, ROOT/PROOF tutorial

Ex. 9: Creating Selector for data analysis (2)
 Edit GridKaAna.h to add a pointer for the output histogram:
 Add these two lines to GridKaAna.h in appropriate places:
 #include <TH1F.h>
 TH1F* fHist; (as a public data member)

 Add the following line to GridKaAna::SlaveBegin() in GridKaAna.C:
 fHist = new TH1F("fHist","x hist",100,-4,4);

 Add the following line to GridKaAna::Process() in GridKaAna.C:
 GetEntry(entry);
 fHist->Fill(fX);

 Add the following line to GridKaAna::Terminate() in GridKaAna.C:
 fHist->DrawCopy();

GridKa School 2011, ROOT/PROOF tutorial

Ex. 9: Creating Selector for data analysis (3)

 (Re-)start your ROOT session

 Run the selector macro:
TFile* file = TFile::Open("gridkaevents.root");
TTree* GridKa = (TTree*) file->Get("GridKa");
GridKa->Process("GridKaAna.C+");

 The "+" after GridKaAna.C results in compilation of the
code before execution
 Always recommended

 Look at your results (in results.root)!

GridKa School 2011, ROOT/PROOF tutorial

Chains (class TChain)
 A chain is a list of trees (in several files)

 TTree methods can be used
 Draw, Scan
 these iterate over all elements of the chain

 Selectors can be used with chains
 Process(const char* selectorFileName)

Chain

Tree1 (File1)

Tree2 (File2)

Tree3 (File3)

Tree4 (File3)

Tree5 (File4)

GridKa School 2011, ROOT/PROOF tutorial

Ex.10: Analysing the chain data

 Run the selector macro:
TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);
ch->Process("GridKaAna.C+");

GridKa School 2011, ROOT/PROOF tutorial

What is PROOF? Why PROOF?

 PROOF stands for Parallel ROOt Facility

 It allows parallel processing of large amount of data. The output
results can be directly visualised (e.g. the output histogram can
be drawn at the end of the proof session).

 PROOF is NOT a batch system.

 The data which you process with PROOF can reside on your
computer, PROOF cluster disks or grid.

 The usage of PROOF is transparent: you should not rewrite your
code you are running locally on your computer.

 No special installation of PROOF software is necessary to execute
your code: PROOF is included in ROOT distribution.

GridKa School 2011, ROOT/PROOF tutorial

 End of ROOT tutorial!

 Questions?

GridKa School 2011, ROOT/PROOF tutorial

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

How does PROOF analysis work?

Data

Proof master
Proof slave

Result

Data

Result

Data

Result

Result

GridKa School 2011, ROOT/PROOF tutorial

Trivial parallelism

GridKa School 2011, ROOT/PROOF tutorial

PROOF terminology
The following terms are used in PROOF:

 PROOF cluster
 Set of machines communicating with PROOF protocol. One of those machines is normally designated as Master (multi-Master

setup is possible as well). The rest of machines are Workers.

 Client
 Your machine running a ROOT session that is connected to a PROOF master.

 Master
 Dedicated node in PROOF cluster that is in charge of assigning workers the chunks of data to be processed, collecting and

merging the output and sending it to the Client.

 Slave/Worker
 A node in PROOF cluster that processes data.

 Query
 A job submitted from the Client to the PROOF cluster.
 A query consists of a selector and a chain.

 Selector
 A class containing the analysis code (more details later)

 Chain
 A list of files (trees) to process (more details later)

 PROOF Archive (PAR) file
 Archive file containing files for building and setting up a package on the PROOF cluster. Normally is used to supply extra

packages used by user job.

GridKa School 2011, ROOT/PROOF tutorial

What should I do to run a job on
PROOF cluster?

 Create a chain containing the files you want to analyse.

 Write your job code and put it in the selector (class deriving from
TSelector).

 Define inputs and outputs via predefined (by class TSelector) lists
(TList objects) fInput and fOutput.

 Create extra packages (if any) which you need by your analysis
and put them in PAR file to be deployed on the PROOF cluster.

GridKa School 2011, ROOT/PROOF tutorial

once on your client

once on each slave

The structure of the
Selector

 Classes derived from TSelector can run locally and in
PROOF

 Begin()

 SlaveBegin()

 Init(TTree* tree)

 Process(Long64_t entry)

 SlaveTerminate()

 Terminate()

for each tree

for each event

GridKa School 2011, ROOT/PROOF tutorial

Input / Output

 The TSelector class has two members of type TList:
 fInput, fOutput
 These are used to get input data or put output data

 Input list
 Before running a query the input list is populated

gProof->AddInput(myObj)
 In the selector (Begin, SlaveBegin) the object is retrieved:

fInput->FindObject("myObject")

GridKa School 2011, ROOT/PROOF tutorial

Input / Output (2)

 Output list
 The output has to be added to the output list on each

slave (in SlaveBegin/SlaveTerminate)
fOutput->Add(fResult)

 PROOF merges the results from each slave
automatically (see next slide)

 On the client (in Terminate) you retrieve the object
and save it, display it, ...
fOutput->FindObject("myResult")

GridKa School 2011, ROOT/PROOF tutorial

Input / Output (3)
 Merging
 Objects are identified by name
 Standard merging implementation

for histograms, trees, n-tuples
available

 Other classes need to implement
Merge(TCollection*)

 When no merging function is
available all the individual objects
are returned

Result from
Slave 1

Result from
Slave 2

Final result

Merge()

GridKa School 2011, ROOT/PROOF tutorial

The structure of the PAR
files

 PAR files: PROOF ARchive
 Gzipped tar file
 PROOF-INF directory
 BUILD.sh, building the package, executed per Worker
 SETUP.C, set environment, load libraries, executed per

Worker

 API to manage and activate packages
gProof->UploadPackage("package")
gProof->EnablePackage("package")

GridKa School 2011, ROOT/PROOF tutorial

ROOT Tutorial (4)
Use an automatic selector macro for tree analysis

 Load the next event; fill the histogram in Process
Bool_t GridKaAna::Process(Long64_t entry) {
 …
 GetEntry(entry); // load the next event
 fHist->Fill(fX);
}

 Write the histogram to a file in Terminate

 void GridKaAna::Terminate() {
 …
 TFile resultfile("results.root", "RECREATE");
 fOutput->Write();
 resultfile.Close();

 }

GridKa School 2011, ROOT/PROOF tutorial

 ROOT Tutorial (4)

How-to run your selector macro [chains]

 Run the selector macro:
TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);
ch->Process("GridKaAna.C+");

GridKa School 2011, ROOT/PROOF tutorial

Running on PROOF Lite
TPoof::Open(“”);
TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);
ch->SetProof();
ch->Process("GridKaAna.C+");

GridKa School 2011, ROOT/PROOF tutorial

ROOT Features: Data Analysis

GridKa School 2011, ROOT/PROOF tutorial

New Event structure
 We will look at more complex Event structure
 Event
 Tracks
 EventHeader

 Event.h, Event.cxx

 We will generate files
 GenerateFiles.C

 We will create MySelector from scratch
 MySelector.C, MySelector.h

GridKa School 2011, ROOT/PROOF tutorial

Processing data on PROOF

 We will use
 RunSelector.C
 ProofBenchDataSel.par
 CreateDataSet.C

 PROOF Lite
 Local files
 Local files using xrootd
 Dataset

 PROOF cluster
 Small dataset
 Full dataset

GridKa School 2011, ROOT/PROOF tutorial

Thank you for your attention!

GridKa School 2011, ROOT/PROOF tutorial

How PROOF cluster works

GridKa School 2011, ROOT/PROOF tutorial

Installation of PROOF cluster

 Install root on all workers

 Start xproofd daemon
 By hand
 Using PoD
 http://pod.gsi.de

 Using PEAC (using SSH plugin from PoD)

 Start xrootd and cmsd daemons
 Using PEAC data management setup (available soon)

GridKa School 2011, ROOT/PROOF tutorial

http://pod.gsi.de�

PoD schema

 picture

GridKa School 2011, ROOT/PROOF tutorial

	ROOT and PROOF Tutorial
	Outline
	What is ROOT?
	Who is developing ROOT?
	Who is using ROOT?
	What can I do with ROOT?
	ROOT features: Data containers
	ROOT features: Data visualisation
	ROOT features: GUI
	ROOT features: CLI
	More information on ROOT
	ROOT Tutorial
	Foliennummer 13
	Preparations for the tutorial
	Macros for tutorial
	Ex. 1: Entering and quitting CLI
	Ex. 2: Simple commands
	Ex. 3: Drawing Graphs
	Macros
	Ex. 4: Histograms
	Ex. 5: GUI
	Trees (class TTree)
	Events
	Ex. 6: Simple event class (1)
	Ex. 6: Simple event class (2)
	Ex. 6: Simple event class (3)
	Ex. 6: Simple event class (4)
	Ex. 7: Creating tree (1)
	Ex. 7: Creating tree (2)
	Ex. 8: Inspecting the content of the tree
	Data analysis: Selectors (1)
	Data analysis: Selectors (2)
	Ex. 9: Creating Selector for data analysis (1)
	Ex. 9: Creating Selector for data analysis (2)
	Ex. 9: Creating Selector for data analysis (3)
	Chains (class TChain)
	Ex.10: Analysing the chain data
	What is PROOF? Why PROOF?
	Foliennummer 39
	How does PROOF analysis work?
	Trivial parallelism
	PROOF terminology
	What should I do to run a job on PROOF cluster?
	The structure of the Selector
	Input / Output
	Input / Output (2)
	Input / Output (3)
	The structure of the PAR files
	ROOT Tutorial (4)�Use an automatic selector macro for tree analysis
	 ROOT Tutorial (4) �How-to run your selector macro [chains]
	Running on PROOF Lite
	ROOT Features: Data Analysis
	New Event structure
	Processing data on PROOF
	Foliennummer 55
	How PROOF cluster works
	Installation of PROOF cluster
	PoD schema

