ROOT and PROOF Tutorial

Arsen Hayrapetyan

A. I. Alikhanyan National Scientific Laboratory, Yerevan,
Armenia;
European Organisation for Nuclear Research (CERN)

Martin Vala

Institute of Experimental Physics,
Slovak Academy of Sciences;
European Organisation for Nuclear
Research (CERN)

mailto:Arsen.Hayrapetyan@cern.ch�
mailto:Martin.Vala@cern.ch�

Outline

» Introduction to ROOT
v ROOT hands-on exercises
» Introduction to PROOF

v PROOF hands-on exercises

IGridKa School 2011, ROOT/PROOF tutorial

What is ROOT?

¢ Object-oriented data handling and analysis framework

¢ Framework: ROOT provides building blocks (root classes)
to use in your program.
Data handling: ROOT has classes designed specifically for
storing large amount of data (GB, TB, PB) to enable
effective...
Analysis: ROOT has complete collection of statistical,
graphical, networking and other classes that user can use
in their analysis.

Object-oriented: ROOT is based on OO programming
paradigm and is written in C++.

GridKa School 2011, ROOT/PROOF tutorial

Who is developing ROOT?

ROQT is an open source project started in 1995 by René
Brun and Fons Rademakers.

The project is developed as a collaboration between:
¢ Full time developers:

¢+ 7 developers at CERN (PH/SFT)

¢+ 2 developers at Fermilab (US)

Large number of part-time contributors (160 in CREDITS file
included in ROOT software package)

A vast army of users giving feedback, comments, bug fixes
and many small contributions

¢ ~5,500 users registered to RootTalk forum
¢ ~10,000 posts per year

ridKa School 2011, ROOT/PROOF tutorial

Who is using ROOT?

All High Energy Physics experiments in the world

Astronomy: AstroROOT (http://www.isdc.unige.ch/astroroot/index)

Biology: xps package for Bioconductor project
(http://prs.ism.ac.jp/bioc/2.7/bioc/html/xps.html)

Telecom: Regional Internet Registry for Europe, RIPE (Réseaux IP Européens)
NCC Network Coordination Centre

(http://www.ripe.net/data—tools/stats/ttm/current—hosts/analyzing—test—box—data)

Medical fraud detection, Finance, Insurance, etc.

GridKa School 2011, ROOT/PROOF tutorial

http://www.isdc.unige.ch/astroroot/index�
http://prs.ism.ac.jp/bioc/2.7/bioc/html/xps.html�
http://www.ripe.net/data-tools/stats/ttm/current-hosts/analyzing-test-box-data�

What can | do with ROOT?

You can:

v’ Store large amount of data (GB, TB, PB) in ROOT-
provided containers: files, trees, tuples.

v Visualise the data in one of numerous ways
provided by ROOT: histograms (1, 2 and 3-

dimensional), graphs, plots, etc.

v’ Use physics analysis tools: physics vectors, fitting,
etc.

v’ Write your own C++ code to process the data stored !
in ROOT containers. “

ridKa School 2011, ROOT/PROOF tutorial

ROOT features: Data containers

¢+ ROOT provides different types of data containers:
¢ Files, folders
¢+ Trees, Chains, etc.

800 \| Old ROOT Object Browser
Eile Miew Optionsg Help

|13 event = il_lé_l <h|[>|*?| ﬂl Dptinnl vl

&ll Folders | Contents of "/ROOT Files/event-vala-1 root/EventTreed/event”

(droot HTokiect % fClosestDistarce g fEventame A7EwtHur 5 fFlan
[IPROOF Sessions A b tHighPt oy f1salic s fLastTrack £ Matri[4][4]
(L) /UsersiabairapeiDocuments/ GridKa school 2011 h fMeasures[l 0] h fHuohs h fHsey h FMtrack a FMvertes

E: ROOT Files b Temperature B Tracks Al fTrigoerBits 5 Typel20] i rwebHistogram
=5 aevent—vala—1 root

EI a EwventTree;4

=8 E'-.-'v:nt

- [(TOiect

[CAfEvtHOr

Dﬂ'riggerBits
+ I:I EventTres;3

4] |
ridka ScHbBIi811, ROOT/PROOF tutofiit*

ROOT features: Data visualisation

¢+ ROOT provides a range of data visualisation methods:
histograms (one- and multi-dimensional), graphs, plots (scatter,
surface, lego, ...)

log¢x)*sin(y)

IGridKa School 2011, ROOT/PROOF tutorial

ROOT features: GUI

The Graphical User Interface (CLI) allows you to manipulate graphical objects

(histograms, canvases, graphs, axes, plots, ...) clicking on buttons and typing
values in text boxes.

cNaNé) |\| Sample Canvas
File Edit ¥iew Options Tools

Style | ginning | 9 SampleRistl
Mame ———— y

SampleHistl :TH1F Entries 1000000

|1D Histograrm

Histogram

Plot————
@ 20 3D

Errar: IND Errars vI
Style: [noLine =|
| Sitrple Drasyitg

[~ Show markers

[~ Draw bar chart

[~ Bar optian
harker

M- [

GridKa School 2011, ROOT/PROOF tutorial

ROOT features: CLI

The Command Line Interface (CLI) allows you to type in the commands (C++,
root-specific, OS shell) and processes them interactively via CINT — C++
interpreter.

Terminal — root.exe — 160x47

pb-d-128-141-31~201:~ ahairape$ root

dhkkkkkthkhkkkkhkrthkhkkhkhkhthkhkhkikdkikddkiikididkdkikidiiki

WELCOME to ROOT
Version 5.28/00f 4 August 2011

You are welcome to visit our Web site
http://root.cern.ch

*
*
*
*
*
*
*
*
*

khkkErkkEkkhkhkrkhthkhkkkhkhkhktdhkhkhhkhkthhhkthkhhhktdhdidk

ROOT 5.28/00f (tags/v5-28-00f£@40489, Aug 18 2011, 19:33:26 on macosx64)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] TH1F* h = new TH1F("TestHist", "Test Histogram", 20, -2, 2);
root [1] h->FillRandom("gaus", 1000000);

root [2] h->Draw();

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl
root [3]

CridKa School 2011, ROOT/PROOF tutorial

¢ http://root.cern.ch

¢+ Download

binaries, source

Documentation
User’s guide
Tutorials

+ FAQ

Mailing list

Forum

ridKa School 2011, ROOT/PROOF tutorial

Home What's New

s

Screenshots

Get a taste of ROOT's capabilities by
sampling some screenshots.

What's New

* August 18, 2011, 16:08
Patch release 5.30/01

* August 8, 2011, 11:38
Patch release 5.28/00f

* June 28, 2011, 11:22
Production release
5.30/00

« June 24, 2011, 2:31
Patch release 5.28/00e

Recent Blog
Posts

* New C++ Standard!

e CERN in the C++
Standards Committee

About Screenshots

/I

Download Documentation Support

Download

Go ahead and download the latest build of
ROOT.

Patch release 5.30/01

patch release
The patch release of ROOT 5.30/01 is now available.
The SVN tag for this version is v5-30-01.
For what is fixed in this patch release see the patch release notes.
Read more
Patch release 5.28/00f
patch release
The patch release of ROOT 5.28/00f is now available.
The SVN tag for this version is v5-28-00f.
For what is fixed in this patch release see the patch release notes.

Read more

I T

Documentation

Get the inside scoop on how to fully utilize
ROOQT. Also, search the Reference Guide,
the HowTo's and the user forums.

http://root.cern.ch�

In this tutorial you will learn how to...

Use CLI and GUI

Create functions and histograms
¢+ Visualise (draw) them

Create and explore files

Create and explore trees

Create chains

Analyse data contained in trees and chains on your
machine

IGridKa School 2011, ROOT/PROOF tutorial

Preparations for the tutorial

¢ Connect to your Ul login server

¢+ Attention! Use -Y option for SSH:
¢ e.g.ssh-Y-p24gso23@gks-2-151.fzk.de

¢+ Connect to one of machines gks-1-NNN.fzk.de

¢ e.g.ssh-Y gso23@gks-1-102.fzk.de
¢+ We will tell you the number of machine you should connect to
¢+ Verify that you have connected to proper machine running “hostname —f”

¢ Run the following command:
¢ source /opt/PEAC/sw/s|-x86 64-4.1.2/VO_PEAC/ROOT/v5-30-01/peac-env.sh
v It will set system paths to include ROOT binary and the libraries

¢ Startroot:

el o0t
* Youshould see ROOT start screen with logo and the ROOT version: 5-30-01

GridKa School 2011, ROOT/PROOF tutorial

mailto:hs023@gks-2-151.fzk.de�
mailto:gs023@gks-1-102.fzk.de�

Macros for tutorial

¢ Create two directories on machines you logged in:
¢ mkdir macros

¢ mkdir workspace

¢ Download tutorial macros:
¢ cd macros

¢ rsync -auvr —-del rsync://mon1.saske.sk/gs .

v" You can root the macro codes during tutorial but we

strongly recommend you to type root code you see on
the slides!

@ Change to working directory
@ cd workspace

iGridKa School 2011, ROOT/PROOF tutorial

http://mon1.saske.sk/gs�

Ex. 1: Entering and quitting CLI

€ To enter ROOT CLI, type the following
command on the Linux shell:

¢ root

v" You are provided with ROOT prompt, indicated by root [N] (N is
the number of commands processed so far by root since
starting it) where you can type in C++ statements, arithmetical
expressions, and even Linux shell commands.

@ To quit the CLI, type the following command:
¢ .q

@ To avoid opening the graphical screen with
ROOT logo in the beginning supply I’ option:

e root-l

GridKa School 2011, ROOT/PROOF tutorial

Ex. 2: Simple commands

¥ You can use ROOT CLI for mathematical
calculations:

¢ root[]sin(0.5) * cos(0.5) + 3/4
¢ root|]sin(0.5) * cos(0.5) +3/4;

€ C++ code snippet:

¢ root[] for (i=1; i<3; ++i) cout << "Hi there!\n";

€ Linux shell commands should be preceded .!:
¢ root[].!date

IGridKa School 2011, ROOT/PROOF tutorial

| 2*sin(x)-6

-4

II|f]||||]II|||II|||IIT1|IIT1|I

[IIII[|

sridka School 2011, ROOT/PROOF tutorial

Macros

¢* ROOT macro is a file containing source code which can

Func", "2*sin(x)-6", -9,9);
anvas("c1","c1", o, 0, 800, 600);

macro.C

¢ Named macro contains the code within a function having
the same name as the macro file, without extension.

{
TF1* f1 = new TF1("1DFunc", "2*sin(x)-6", -9,9);
TCanvas* c1 = new TCanvas("c1", "c1", 0, 0, 800, 600);
f1->Draw();

}

Macro: root/unnamed_macro.C

GridKa School 2011, ROOT/PROOF tutorial

1D Ristogram SampleRistli
Entries 1000000

Maan -0.0003844
RMS 0.88z24

e No

EX. 5: GUI

A\ Sample Canvas

Eile Edit Miew Options Tools

Style I Binning |
Marme
SampleHistz: TH1F

Line
M i—=
[1———— =
Fill
|~ -
Title
|1D Histogram

Histagram

Plot
’75' 2D 3D

Errar: |N|:| Errars "I
Style: INnLine vI

[T | Sifmple Drawimg
[Show markers
[~ DCraw bar chart
[~ Bar option

rAarket

IS

SampleRist2
Entries 1000000
Mean 0O0.0006422
RMS 0.8825

sridKa School 2011, ROOT/PROOF tutorial

.

Trees (class TTree)

A tree is a container for data storage

It consists of several branches
¢ These can be in one or several files

¢ Branches are stored contiguously (split mode)

Set of helper functions to visualize the
content (e.g. Draw, Scan)

Compressed

1 "Event" Branches

Events

PGridKa School 2011, ROOT/PROOF tutorial

Events

¢ Events are units of data which are stored in trees
and can be processed independently from each
other (PROOF’s event-level parallelism is based on

these properties).

v’ In the following exercises we will create a simple

event class, then we will create a tree containing
events, inspect and process/analyse it.

GridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (1)

Create a file TGridKaEvent.C with the following
content.

bject.h>
aEvent : public TObject {

ent() : TObject() {};
ridkaEvent() {};
GridKaEvent,1)

Compile and print information about the class:

¢ root|].LTGridKaEvent.C+

¢ root || TGridKaEvent* event = new TGridKaEvent();
¢ root [] event->Dump();

IGridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (2)

¢ We are now extending the TGridKaEvent class so
that for every event it contains three variables
X, TY, fZ with double precision

¢ Add 3 ‘Getter’-Functions GetX(),GetY(),GetZ()
¢+ Initialize fX, tY, fZ in the constructor with ‘0’

¢ Add a method void FillGaus() which fills fX, fY, fZ
with random variables from a Gaussian
distribution

¢ Use gRandom->Gaus(<mean>, <sigma>)

pGridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (3)

¢ Edit the file TGridKkaEvent.C: add the lines marked
with red:

TObject {

X5
Y;
Z

), £X(0) , fY(0), fZ(0) {};

S0

)
)

aridKa School 2011, ROOT/PROOF tutorial

Ex. 6: Simple event class (4)

¢+ Recompile the class:
¢ root|].LTGridKaEvent.C+

¢+ Create a new Event object:
¢ root []| TGridKaEvent* e = new TGridKaEvent;

¢ Call the FillGaus() method and print the event object:
¢ root[]e->FillGaus();
¢ root[]e->Dump();
¢ root[]e->FillGaus();

¢ root[]e->Dump();

IGridKa School 2011, ROOT/PROOF tutorial

Ex. 7: Creating tree (1)

¢ In this exercise we will create a tree and fill it with
events of class TGridKaEvent.

¢+ We will Create a macro WriteGridKaTree.C which will create
a file gridkaevents.root to store a TTree witTGridKaEventh
events containing one branch of type. We will use function

FillGaus() to fill 1M times the event. Finally, we will fill the
tree with events and save it to the file.

__ ridKa School 2011, ROOT/PROOF tutorial

Ex. 7: Creating tree (2)

GridKaEvent.C+");

lkaevents.root", "RECREATE");

GridKa", "The GridKa Event Tree");

t = new TGridKaEvent();

3ranch("gridkaevent”, "TGridKaEvent", &gridkaevent);

+i) {

aridKa School 2011, ROOT/PROOF tutorial

L
% Ex. 8: Inspecting the content of the tree

anmno |%] ROOT Object Browser

Erowser |Ei|e Edit ¥iew Options Tools Help
Files I Editar 1 Canyas 1 |z||
2| &| oraw option: | -] i dk t.fX |
& i ridkaavant. -
el Le Entries 1000000
(oot 45000 Mean 1.999
[PROOF Sessions — BMS L3984
(A ROOT Files 40000
=3 T2 aridkasvents raot —
= | Griclka; 35000—
- Ml grickasvent -
- A TObiect S =
il | 25000
R z =
= 3 | 20000
=0 —
-2 Users 15000 —
| 10000
5000
: 1 1 I 1 1 I 1 1
o —2 &
gridkasvent. fX
Command |
Command (jocal): | =]
Filter: [A1l Files ("% =] I

CridKa School 2011, ROOT/PROOF tutorial

Data analysis: Selectors (1)

= ¢ To perform tree-based data analysis one can loop over all
. events in the tree and process them with Selector. The
method TTree::Process() loops over the events in the tree

and executes the code written in the Selector for every
event.

v We will create a selector to fill a histogram with the distribution

of variable fX of the class GridKaEvent which we created in
Exercise 7.

BGridka School 2011, ROOT/PROOF tutorial

Data analysis: Selectors (2)

* The class TSelector provides the following methods:

¢ TSelector::Begin() — This method is called once at the beginning
of the tree processing. This is the place to create the histograms
which you want to fill with the data of the tree.

TSelector::Process() — This method is invoked for every event in
the tree. This is the place to put the analysis code and fill your
histograms.

TSelector::Terminate() - This method is invoked at the end of
the loop over tree events. This is the place to fit and draw your
histograms.

ridKa School 2011, ROOT/PROOF tutorial

Ex. 9: Creating Selector for data analysis (1)

= ¢ |In this exercise we will create selector to traverse the tree
events

Create an empty selector macro GridkaAna.C to analyze
your tree by calling MakeSelector on the tree object:
root [].L TGridKaEvent.C+
root [| TFile* f = TFile::Open(‘“gridkaevents.root”);
root [| TTree* t = (TTree*) file->Get("GridKa");
root [| t->MakeSelector("GridKaAna");

v Two files will be created in your current directory: GridKkaAna.C
and GridKaAna.h. They will contain the class GridKaAna inherited
from TSelector. We need to add our code to methods Begin(),
SlaveBegin(), Process(), SlaveTerminate() and Terminate() to do
the analysis.

CridKa School 2011, ROOT/PROOF tutorial

X. 9: Creating Selector for data analysis (2)

Edit GridKaAna.h to add a pointer for the output histogram:
- ¢ Add these two lines to GridKkaAna.h in appropriate places:

¢+ #include <TH1F.h>

¢ TH1F* fHist; (as a public data member)

._ Add the following line to GridKaAna::SlaveBegin() in GridKaAna.C:
¢ fHist = new TH1F("fHist","x hist",100,-4,4);

P Add the following line to GridKaAna::Process() in GridkaAna.C:

¢ GetEntry(entry);
¢ fHist->Fill(fX);

Add the following line to GridKaAna::Terminate() in GridKaAna.C:
¢+ fHist->DrawCopy();

GridKa School 2011, ROOT/PROOF tutorial

. 9: Creating Selector for data analysis (3)

¢ (Re-)start your ROOT session

¢ Run the selector macro:
TFile* file = TFile::Open("gridkaevents.root");
TTree* GridKa = (TTree*) file->Get(" GridKa");
GridKa->Process("GridKaAna.C+");

¢ The"+" after GridKkaAna.C results in compilation of the
code before execution

¢+ Always recommended

¢ Look at your results (in results.root)!

__ ridKa School 2011, ROOT/PROOF tutorial

Chains (class TChain)

¢ Achainis alist of trees (in several files)

¢ TTree methods can be used
¢ Draw, Scan

- these iterate over all elements of the chain

¢+ Selectors can be used with chains

¢+ Process(const char* selectorFileName)

pGridKa School 2011, ROOT/PROOF tutorial

Chain

Tree1 (File1)

Tree2 (File2)

Tree3 (File3)

Tree4 (File3)

Trees (Fileg)

Ex.10: Analysing the chain data

¢ Run the selector macro:
TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);
ch->Process("GridKaAna.C+");

IGridKa School 2011, ROOT/PROOF tutorial

What is PROOF? Why PROOF?

PROOF stands for Parallel ROOt Facility

It allows parallel processing of large amount of data. The output
results can be directly visualised (e.g. the output histogram can
be drawn at the end of the proof session).

PROOF is NOT a batch system.

The data which you process with PROOF can reside on your
computer, PROOF cluster disks or grid.

The usage of PROOF is transparent: you should not rewrite your
code you are running locally on your computer.

No special installation of PROOF software is necessary to execute
your code: PROOF is included in ROOT distribution.

GridKa School 2011, ROOT/PROOF tutorial

End of ROOT tutorial!

Questions?

GridKa School 2011, ROOT/PROOF tutorial

How does PROOF analysis work?

Client — Remote PROOF Cluster
Result
Local PC T e il

stdout/result |

b
4

ana.C

Result

—
Data

Result

Proof master
Proof slave

o

B CridKa School 2011, ROOT/PROOF tutorial

Trivial parallelism

Sequential Unordered Parallel
Processing Processing Processing

Data Data .E,’_a? -

Ev. 6 _|_
Ev. Ew.
Ev. Ev. Ev.7

Ev. Ev. Ev. 8
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.
Ev. Ev.

! !

D00~ LN b B =
W=l oW &= b

—
— D

—
fd

IGridKa School 2011, ROOT/PROOF tutorial

PROOF terminology

The following terms are used in PROOF:

PROOF cluster

’ Set of machines communicating with PROOF protocol. One of those machines is normally designated as Master (multi-Master
setup is possible as well). The rest of machines are Workers.

Client
* Your machine running a ROOT session that is connected to a PROOF master.

Master

¢+ Dedicated node in PROOF cluster that js in charge of assigning workers the chunks of data to be processed, collecting and
merging the output and sending it to the Client.

Slave/Worker
¢+ Anode in PROOF cluster that processes data.

Query
¢+ Ajob submitted from the Client to the PROOF cluster.
A query consists of a selector and a chain.

Selector
¢ Aclass containing the analysis code (more details later)

Chain
¢+ Alist of files (trees) to process (more details later)

PROOF Archive (PAR) file

+ Archive file containing files for building and setting up a package on the PROOF cluster. Normally is used to supply extra
packages used by user job.

What should I do to run a job on
PROOF cluster?

Create a chain containing the files you want to analyse.

Write your job code and put it in the selector (class deriving from
TSelector).

Define inputs and outputs via predefined (by class TSelector) lists
(TList objects) fInput and fOutput.

Create extra packages (if any) which you need by your analysis
and put them in PAR file to be deployed on the PROOF cluster.

ridKa School 2011, ROOT/PROOF tutorial

The structure of the

Selector

¢ C(lasses derived from TSelector can run locally and in

PROOQF

¢+ Begin()

once on your client

¢+ SlaveBegin()

once on each slave

for each tree

for each event

¥ Slave lermimnate()

———Ferminate
V)

[

T P B

Input / Output

¢ The TSelector class has two members of type TList:
¢ fInput, fOutput
¢ These are used to get input data or put output data

¢ Input list

¢ Before running a query the input list is populated
gProof->AddInput(myObij)

¢+ In the selector (Begin, SlaveBegin) the object is retrieved:
flnput->FindObject("myObject")

IGridKa School 2011, ROOT/PROOF tutorial

Input / Output (2)

¢ Output list

¢ The output has to be added to the output list on each
slave (in SlaveBegin/SlaveTerminate)
fOutput->Add(fResult)

¢+ PROOF merges the results from each slave
automatically (see next slide)

¢ On the client (in Terminate) you retrieve the object
and save it, display it, ...
fOutput->FindObject("myResult")

GridKa School 2011, ROOT/PROOF tutorial

Input / Output (3)

¢ Merging
¢ Objects are identified by name

¢ Standard merging implementatio
for histograms, trees, n-tuples
available

¢ Other classes need to implement
Merge(TCollection*)

¢* When no merging functionis
available all the individual objects
are returned

BGridka School 2011, ROOT/PROOF tutorial

Result from
Slave 1

Result from
Slave 2

\

e

Merge()

\/

Final result

The structure of the PAR
files

¢+ PAR files: PROOF ARchive
¢ Gzipped tarfile

¢+ PROOF-INF directory
¢ BUILD.sh, building the package, executed per Worker

¢+ SETUP.C, set environment, load libraries, executed per
Worker

¢ API to manage and activate packages
gProof->UploadPackage("package")
gProof->EnablePackage("package")

pGridKa School 2011, ROOT/PROOF tutorial

ROOT Tutorial (4)

Use an automatic selector macro for tree analysis

¢ Load the next event; fill the histogram in Process
Bool t GridKaAna::Process(Long64 tentry) {

aétEntry(entry); /[load the next event
fHist->Fill(X);

}

¢ Write the histogram to a file in Terminate

void GridKaAna::Terminate() {

TFile resultfile("results.root", "RECREATE");
foutput->Write();
resultfile.Close();

}

pGridKa School 2011, ROOT/PROOF tutorial

ROOT Tutorial (4)

How-to run your selector macro [chains]

¢ Run the selector macro:
TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);
ch->Process("GridKaAna.C+");

IGridKa School 2011, ROOT/PROOF tutorial

Running on PROOF Lite

TPoof::Open(“”);

TChain* ch = new TChain(“GridKa”, “GridKa Chain”);
ch->AddFile(“gridkaevents.root”);

ch->SetProof();

ch->Process("GridKaAna.C+");

IGridKa School 2011, ROOT/PROOF tutorial

Browser Eve |Elle Camera
Eve |Files | Macros |
AW Viewers
3-/@& F GLvirwer
I3[Scenes
4 T8 7 Geometry scene
4 (5 [Event scene
=4 Event o
=123 7 ESD Traks by catagery
& L T 2 ¢ 3% "
® IR 3 « Sigm « S B3] 0 T A bl ke 3 : ol 2:EK:EDS,HLBIDIEMEDTD
LIRS < Sigma [165] @ e : LR ks e s 1 Peg
- IR na 1T refit, Sigma < S 457 O " N : it S 4 ¢ P 5
&~ o T8 et Gigma » 5 725) W . X o 5 » | Det(in,out,refit pid)
- C1Fno TRC refit [34] @ i W' 3 . 5 b — R RN
- 15 stand-sone [111] 8
[TAD Custers 0
[7 115 Clusters 0
© P TPC Cizsters B
¥ TOF Chsters 0
I 0 offine ve: o
[VO on-the-fiy vertex locations B
a{Eresov

stle | rets |
Name
Slgma < 3 [1197]-TEveTrackList

TEveElement
Show: ¥ Self 7 Children

Marker ——————
W [i03
Line ———
B
—
I~ Draw Marker ¥ Draw TEveline

Fimg | 0002 6304
Py [o0 o3
Renderstls
MR [S2008f — 4
Max Z: nsnnﬁu

omis | 058 p——

O

prge [com—g

oo [0T

iridKa School 2011, ROOT/PROOF tutorial

New Event structure

¢+ We will look at more complex Event structure

¢ Event
¢ Tracks

¢+ EventHeader

¢+ Event.h, Event.cxx

¢+ We will generate files
¢ GenerateFiles.C

¢+ We will create MySelector from scratch
¢+ MySelector.C, MySelector.h

IGridKa School 2011, ROOT/PROOF tutorial

Processing data on PROOF

¢+ We will use
¢+ RunSelector.C
¢ ProofBenchDataSel.par
¢ (CreateDataSet.C

SePROOF luite
¢ Localfiles
¢ Localfiles using xrootd
¢+ Dataset

¢ PROOF cluster

¢+ Small dataset
¢ Full dataset

IGridKa School 2011, ROOT/PROOF tutorial

Thank you for your attention!

IGridKa School 2011, ROOT/PROOF tutorial

How PROOF cluster works

SKAF

[xmn-td SEI

xproaid

| xrootd RDR+DS |

xproafd xprooid

Kpr wfid
g

IGridKa School 2011, ROOT/PROOF tutorial

Installation of PROOF cluster

¢ Install root on all workers

¢+ Start xproofd daemon
By hand
Using PoD
¢ http://[pod.gsi.de
Using PEAC (using SSH plugin from PoD)

¢+ Start xrootd and cmsd daemons
¢ Using PEAC data management setup (available soon)

IGridKa School 2011, ROOT/PROOF tutorial

http://pod.gsi.de�

PoD schema

¢ picture

GridKa School 2011, ROOT/PROOF tutorial

	ROOT and PROOF Tutorial
	Outline
	What is ROOT?
	Who is developing ROOT?
	Who is using ROOT?
	What can I do with ROOT?
	ROOT features: Data containers
	ROOT features: Data visualisation
	ROOT features: GUI
	ROOT features: CLI
	More information on ROOT
	ROOT Tutorial
	Foliennummer 13
	Preparations for the tutorial
	Macros for tutorial
	Ex. 1: Entering and quitting CLI
	Ex. 2: Simple commands
	Ex. 3: Drawing Graphs
	Macros
	Ex. 4: Histograms
	Ex. 5: GUI
	Trees (class TTree)
	Events
	Ex. 6: Simple event class (1)
	Ex. 6: Simple event class (2)
	Ex. 6: Simple event class (3)
	Ex. 6: Simple event class (4)
	Ex. 7: Creating tree (1)
	Ex. 7: Creating tree (2)
	Ex. 8: Inspecting the content of the tree
	Data analysis: Selectors (1)
	Data analysis: Selectors (2)
	Ex. 9: Creating Selector for data analysis (1)
	Ex. 9: Creating Selector for data analysis (2)
	Ex. 9: Creating Selector for data analysis (3)
	Chains (class TChain)
	Ex.10: Analysing the chain data
	What is PROOF? Why PROOF?
	Foliennummer 39
	How does PROOF analysis work?
	Trivial parallelism
	PROOF terminology
	What should I do to run a job on PROOF cluster?
	The structure of the Selector
	Input / Output
	Input / Output (2)
	Input / Output (3)
	The structure of the PAR files
	ROOT Tutorial (4)�Use an automatic selector macro for tree analysis
	 ROOT Tutorial (4) �How-to run your selector macro [chains]
	Running on PROOF Lite
	ROOT Features: Data Analysis
	New Event structure
	Processing data on PROOF
	Foliennummer 55
	How PROOF cluster works
	Installation of PROOF cluster
	PoD schema

