Virtualisation

Owen Synge (DESY HH)

Owen Synge Virtualisation GridKa School, 5/9/2011

Overview

- > Background to Virtualisation
- > Why use it?
- > Who is using it?
- > What is going to be done with it?
- > What about Clouds?

My first computer!

> What was yours?

- ZX Spectrum
- Comadore 64
- Amega
- IBM PC
- I wanted to play a spectrum game.
 - My spectrum was not available.
 - The software was available.
 - I had an Intel 286 based computer.

Emulators.

Emulators.

- An piece of software or hardware that "Emulates another computer"
- Software can allow me to play my old computer game.
- Intel/AMD CPU's Emulate the 8086 CPU.
- > This is a from of Virtualisation!
 - We are not going to talk about old games!

History of Virtualisation.

IBM operating systems in the 1960's did not support multiple users.

- Failed project to make a modern time sharing operating system.
 - Lets Change the Hardware its easier ?
- CP/CMS with virutalised computers reaches production in 1967.
- VM/370 released in 1972 IBM supports virtualisation as center of mainframe computer.

> Operating system level virtualisation

- The first "chroot"
- Solaris Containers/Zones
- BSD Jails, with FreeBSD 4.0 (2000)
- AIX "workload partitions"
- Linux OpenVZ / Virtuozzo
- Modern Full and Para virtualisation
 - Vmware, Xen, Kvm and many many more.

Emulators

Definition

Application or hardware that behaves like another type of hardware.

> Advantages

- You don't need the old hardware (like a Commodore 64)
- Support many old CPU's
 - I was taught assembly on a PDP 7 at university.
 No I am not old enough to have used a real one
- Executing application does not know its in an Emulator.

> Disadvantages

- Slow, Inefficient, Resource intensive.
 - Intel 386 was to slow to emulate my ZX spectrum without tricks such as frame skipping.
- Complex to implement.
 - Need full understanding of original hardware.
 - > Amiga Emulation took a long time to get it working.

Summary

- No place in a high throughput compute cluster.
- Useful for cross platform testing, and developmentName | Title of Presentation | Date | Page 6

Operating System Level Virtualisation.

Definition

- Operating systems provide environment for applications.
- Multitasking OS's can run more than one application at same time.
- Why not run multiple environments and application at the same time?
- > Advantages.
 - Native OS performance.
 - OS ensures applications cant effect one and other.
- > Disadvantages.
 - Only one OS can run at a time.
 - OS is providing application environment isolation.
 - UNIX is not good at application isolation
 Ever seen a fork bomb?

Summary.

- Useful in many environments when performance is critical.
- Consolidating servers.
- Improved isolation of applications.
 - Running Ubuntu on an Android phone and yone | Title of Presentation | Date | Page 7

Hardware Virtualisation.

- Definition : Popek and Goldberg virtualization requirements (1974)
 - Equivalence / Fidelity
 - A program running under the VMM should exhibit a behavior essentially identical to that demonstrated when running on an equivalent machine directly.
 - Resource control / Safety
 - The VMM must be in complete control of the virtualized resources.
 - Efficiency / Performance
 - A statistically dominant fraction of machine instructions must be executed without VMM intervention.
- Some Hardware capable of doing this
 - System/370 (Main frame)
 - Power PC (Main frame)
 - SPARC (Unix punks)
 - IA-64 (Unix Punks)
 - Amd64/IA32 with either AMD-V or Intel VT-x extensions (Commodity hardware)
 - Now a normal desktop or laptop can do virtualisation.
 - This is exciting, virtualisations not just for big Iron.

Hardware Virtualisation Pros and Cons.

> Advantages.

- Can run different Operating systems on same hardware.
 - > eg. Linux running Windows VM's is not an issue.
- Hardware provides Isolation between operating systems.
- Decoupling of VM and VMM operating system is complete.
 - > VM crash should not effect VMM layer.
- Disadvantages.
 - Performance is effected by having multiple levels of scheduling by multiple OS.
 - VM Hardware must match Physical Hardware (drivers can isolate details).
 - Performance on accessing resources accessed by multiple OS's can suffer greatly.
 - > Intel and AMD are working on networking and Disk performance.

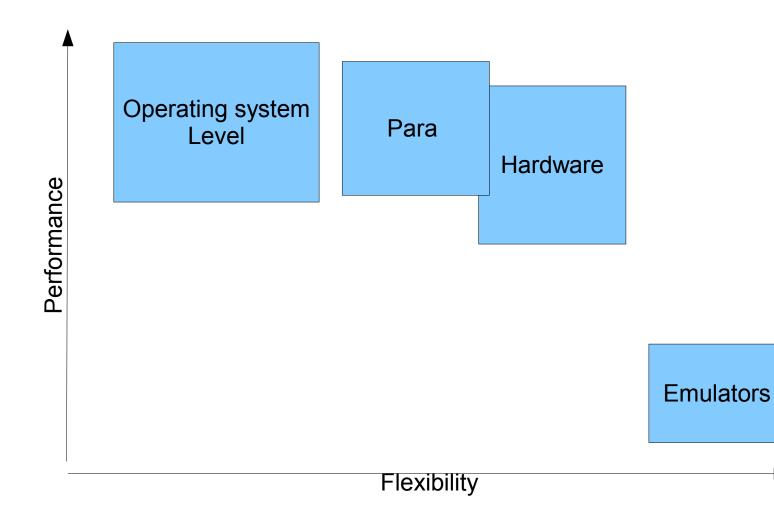
> Summary.

- Very useful for running applications that must run on a foreign OS.
- Great for consolidating services.
- Great for OS portability testing.

Para Virtualisation

Definition.

- Hybrid between OS level Virtualisation and Hardware Virtualisation.
 - > Typically using 'drivers to communicate between operating systems
- > Advantages
 - Performance can get closer to OS level virtualisation performance.
 - Isolation is better than just OS level virtualisation.
- > Disadvantages
 - Isolation is typically closer to OS level performance than Hardware level isolation.
 - > So VM may effect VMM layer.
 - Coupling between OS of VM and OS of VMM. (Some kernels work together some don't)
 - > Need to support this in VM and VMM.


Summary.

- Faster than hardware virtualisation.
 - > KVM and XEN are usually used para virtualised.
 - > 4% CPU and Network overhead is possible.
- Para virtualisation is suitable for Worker node virtualisation.
- You cant run Windows 95 on a Linux box using para Virtualisation.

OS support required. First and Last Name | Title of Presentation | Date | Page 10

Forms of Virtualisation

First and Last Name | Title of Presentation | Date | Page 11

Whats the difference between a VM and a Real Machine

- > Not much (see definition on previous slide).
- Easy to snapshot. (so you can roll back changes)
- > Potential for High availability. (moving OS across machines)
- > Can share hardware so reduce energy demands.
 - Even RAM can be shared.
- > Hardware can be reassigned while running.
 - Adding a CPU to a running system.
- > Higher latency.
- > Poor latency.
 - This is getting better.
- > Slow disk access.
- > Failures can be bigger.

What should we use VM's for?

Software testing.

- 30 seconds to restore a VM to its original image.
 - > For me with vmimagemanager
- Can be easily scripted on the VM host.
- Is used by Me, Etics, EGI certification testbed.
- > Consolidation of resources.
 - Most servers spend most of their time doing nothing.
 - Ideally services with low disk IO.
- Long term application environments
 - Like reusing my old ZX Spectrum games.
 - > LTDA= Long term data Analysis?
- > Worker node flexability.
 - Migrating all users to same OS at same time is not easy.

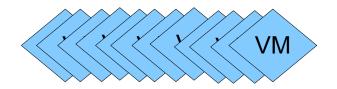
Virtualisation for testing.

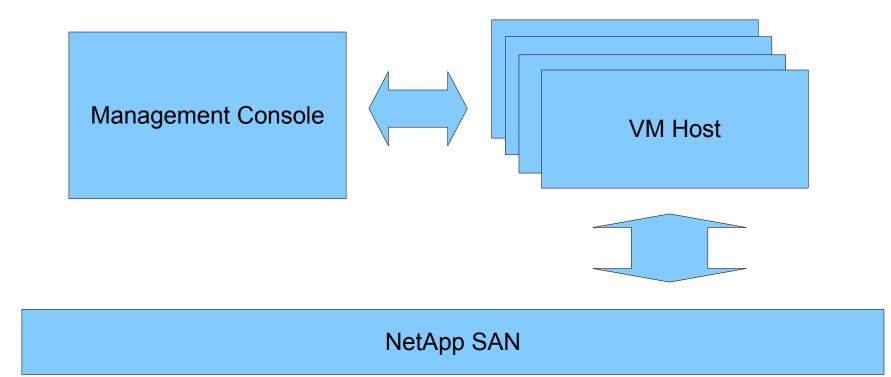
- Common for deployment testing.
 - Grid Irland, CERN, and my self been doing this for more than 5 years.
 - Quattor, Puppet, YAIM configuration management,
 - Great benefits in speed of resetting machines.
- Common for dependency testing.
 - All dependencies are installed from a base image.
 - Trap dependency changes in a nightly build
 - Etics, and myself been doing this for more than 4 years.
 - Developers have a nasty habit of adding dependencies
 - > I do it myself.
- > Testing large clusters.
 - If not performance critical this can be useful.

Desy Xen Cloud : Consolidation - Hardware and numbers.

- > Many Available solutions from Vmware, Redhat, OpenStack, M\$, etc.
- > 300VMs with different OSs
 - Windows 2003 2008 XP 7 and Debian, SL, Oracle, Ubuntu, Solaris
- > 8 DELL R815 48Cores AMD MagnyCours with 128GB RAM
- > 5 R610 12Core Intel Gulftown 96GB RAM
- > 1 Netapp FAS6040 with 20TB over Fiber Channel Brocade Fabric
 - ISCSI was a disaster

> Imagine al I300 VM's loosing write access to their disc.


IO Performance is still an issue.


> Periodic latency spikes in Disc latency.

- > Although we had problems this is a good solution for consolidation.
 - We would do this again if we had not done this at DESY.

Xen Service layout

Desy Xen Cloud : Management console.

File View Pool Server VM Storage Templates Tools Window Help					🧹 No System Alert		
w: Server View	ver View P - La grid-xen4				Logged in as: Local root accour		
🖃 🧕 grid-xen4	Search General Storage Network NICs	Console Performance Logs					
grid-core5	grid-xen4 Overview				Search Options 🔹		
rid-cures constructions constr	Name	CPU Usage	Used Memory	Disks (avg / max KBs)	Network (avg / max KBs)		
grid-lfc-pps	grid-xen4 Default install of XenServer	2% of 16 CPUs	49% of 48 GB	-	278/1110		
🐝 grid-vomrs1	🐻 grid-bdii2	6% of 2 CPUs	82% of 2 GB	1343/1343	1026/1026		
t2-atlas-vo	🚯 grid-core5	0% of 2 CPUs	100% of 2 GB	0/0	1/1		
DVD drives	🖏 grid-core6	0% of 2 CPUs	56% of 2 GB	0/0	1/1		
iii Removable storage grid-xen5	🐻 grid-giis1	1% of 2 CPUs	24% of 2 GB	94/94	18/18		
₩o grid-core0 ₩o grid-core7	🐻 grid-lb2	12% of 1 CPU	98% of 2 GB	639/639	7/7		
🚯 grid-lb0 🚯 grid-scas1	🐻 grid-lfc-pps	0% of 2 CPUs	47% of 2 GB	2/2	1/1		
₩o grid-wms-pps DVD drives	🗾 🐻 grid-vo-pps	0% of 2 CPUs	97% of 1 GB	0/0	1/1		
Cocal storage	🚯 grid-vomrs1	0% of 2 CPUs	58% of 4 GB	9/9	1/1		
🖃 🎩 grid-xen6 ആ grid-bdii 1	🐻 grid-voms1	0% of 2 CPUs	42% of 4 GB	17/17	1/1		
irid-core2 constant constant corection corecti	🐻 t2-atlas-vo	0% of 2 CPUs	96% of 1 GB	0/0	1/1		
₩ grid-px1 ■ DVD drives	-						

Open Stack

> Controler Node

- Runs Certificate Authority for security.
- Runs message queue.
- > Compute Node
 - Runs VM's and requests them from Object store.
- > Object store
 - Stores snapshots of images.
- Image service.
 - Registers images for creating or installing on VM's

A validation system for data analysis in HEP using virtualization

- motivation
- concepts and design
- walk through the implementation
- summary and outlook

<u>Yves Kemp (DESY IT),</u> Marco Strutz (HTW Berlin)

Fifth Workshop on Data Preservation and Long Term Analysis in HEP Fermilab, 05/16/2011

Study Group for Data Preservation and Long Term Analysis in High Energy Physics Date | Page 19

... but first some thoughts about "Pizza Preservation"

How to preserve a pizza?

- Couple of days
 - Fridge
- Couple of month
 - Deep freezer
- Couple of years???
 - Preserve the recipe
 - Practice it often: You will not forget the recipe and you can detect variations in external dependencies

Putting software in the fridge or in the deep freezer

- > How? Ranges from just "saving the source code" to build complex cloud-like virtualization production frameworks
- Pro's and con's have been discussed at many occasions ... personal summary

> Pro's:

Easy to do (manpower), easy to do (time)

Con's:

- Runability of the software and correctness of results not guaranteed
- Changes if needed will become more difficult the longer SW is frozen
- Freezing SW OK if timeline and scope reduced
 - E.g. makes perfectly sense for BaBar SW and analysis
- In but this is probably not the case for HERA: No successor experiment foreseen
 - So, cook the same recipe ever and ever again, and validate the output automatically

Bar Bar and the Big Freezer : Design Requirements

> Assume the back versioned OS are compromised

The LTDA system shall not be able to harm other systems at SLAC or outside

Isolation of compromised components

- The LTDA system shall prevent accidental modification or deletion of data
- Nearly impossible to protect against intentional acts
- Maintain user identity for access to old OS; it can be done in simple ways (LRM, ssh)
- Detect all compromised elements
- Directly affects the network architecture
 - Isolation of back versioned components
 - Physical hosts centrally managed by SLAC CD
 - Firewall rules

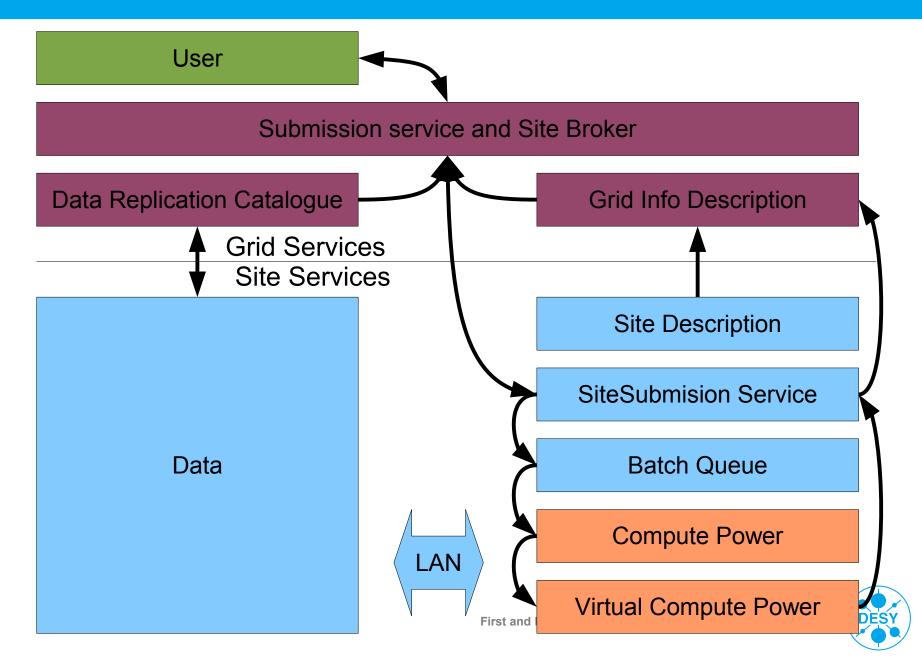
BaBar and the big Freezer : BaBar's Conclusions

LTDA is progressing quickly

- Prototype infrastructure ready and working
- BaBar Framework running
- > DOE in general very supportive for the LTDA project
- Other activities going on as part of the LTDA
 - Documentation and Outreach
 - Next big step: finalize the design and get ready to purchase the first half of the LTDA before the end of FY11
- Notes taken from Archive by Tina Cartaro (SLAC)
 - On behalf of BaBar LTDA Group

High Throughput Virtualisation some comments.

> What do HEP users do with a cloud?


- In Canada first thing they do is install a batch queue.
- > Why HEP uses batch queues.
 - To maximize through put.
 - Users don't always submit jobs when resources are available.
 - Node can always busy!
 - Small sites wont have 90% occupancy.
 - > But if reliable site they will get closer to this level of use.

> Why putting Batch queue on a Cloud is silly! (at the moment)

- Batch Queue Fair share allows resources to be scavenged.
 - One group can use another unused resources.
- Clouds allocate resources before the VM is started.
 - Batch queues don't like their size to change frequently.
 - So efficiency at site level goes down.
- Budgets are limited you cant just buy more hardware!
 - So Clouds will fill up, no one seems to know what to do then.

Virtualising the Worker Node.

5 Models of worker node Virtualization

> Defined at DESY virtualization workshop.*

1)Worker node running one persistent virtual machine with a single OS image.

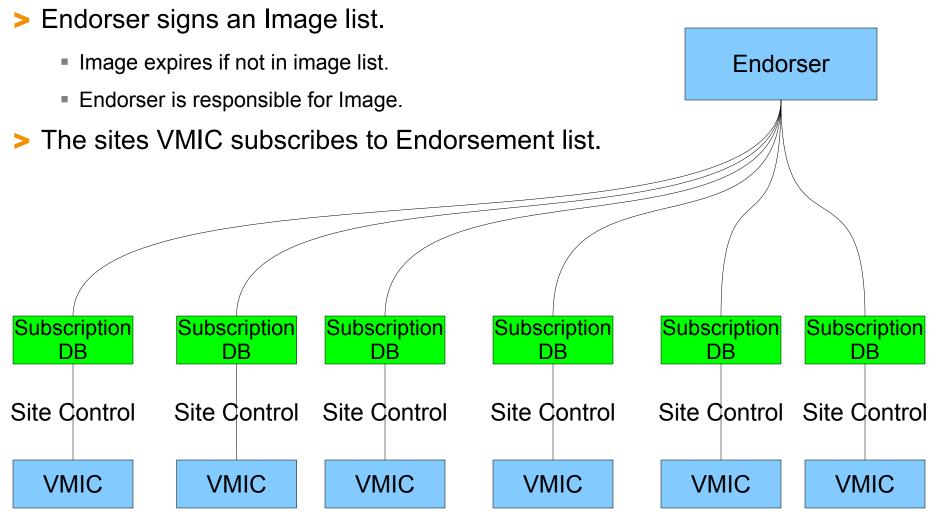
- 2)Worker node running multiple/2 persistent virtual machines with multiple/2 OS images.
- 3)Worker node running non persistent virtual machine images.
- 4)Worker node running non persistent virtual machine image from a library of OS images.
- 5)Worker Node running non persistent virtual machines and using user defined images.
- Models 1,2 and 3 in production in 2007 at some sites.
- Model 5 blocked by data access concerns in 2007.
 - Virtualised Networks overcome this, but what about storage access?
- Model 4 Seems acceptable to sites running HEP jobs.
 - On presenting to HEPIX in Umea 2009

16-17 January 2007 https://indico.desy.de/conferenceDisplay.py?confld=155

- Software has security bugs.
 - When these are discovered they must be patched fast.
 - How do we manage this?
 - How do we manage this in many sites?
 - Do we care if its securely wrapped up on a Virtual network and a Virtual PC?
 - What about storage access?
- > How do we deploy images at all the sites in a Grid comunity?
 - In amazon / Rackspace this is easy as you only use one site.
- > Configuring your cloud.
 - Suddenly users have to manage their cloud.
 - Cfengine/Puppet/Quattor?
 - Skills need to move from data center to experiments.
 - This is not trivial work.
 - This is a LOT of work

Image transfer Objective

- > How to transfer images securely.
 - We know who made the image (Endorser)
 - We know the image is unmodified after endorsement.
 - We know the endorser cant repudiate their image list.
- > Privileged images on sites must be authorized by administrator.
 - Can subscribe to an image from an image list.
 - Have minimal work for a site admin.
- Site must be able to revoke Images.
 - An image, an endorser or a set of image subscription.



Stratus Lab : Model

- Market place of images.
- > RDF store of image metadata.
- > Uses simple SQL like Query language for finding images.
- Images can be instantiated directly to Open Nebular Clouds.
- > Currently in development.

HEPIX VWG : Publish Subscribe Image list model.

Image to Meta data Binding (Hepix VWG and StratusLab)

Image to Meta data binding.

- Cryptographic hashes.
 - It is easy to compute the hash value for any given data.
 - It is infeasible to generate a message that has a given hash.
 - It is infeasible to modify a message without hash being changed.
 - It is infeasible to find two different messages with the same hash.
- Chose to use sha512 and file size to validate data.
 - HEPIX VWG Following Stratus Lab's recommendation.
- Other hashes can be added.
 - If sha512 and size are later found to be too week.
- URI to retrieve image.
 - Can be cached locally.
- Each image has a UUID
 - So we know which image is expired and which is upgraded.

Signed messages. (HEPIX VWG and StratusLab)

Meta-data authenticity.

- X509 + signatures. (SMIME or XML signatures)
 - Gives non repudiation, and confidence in who endorsed.
 - Give tamper proof message.
 - Signature can be checked by all clients,
 - Allows checking of historic meta-data changes.
- Version number.
 - Prevents man in middle attacks.
 - Man In Middle attempts to return an old list blocked by this.
- UUID on Image (and Image list for HVWG)
 - Allows messages to be identified.
 - So messages cannot effect each other.
 - So images can be expired and updated.

CERNvm and CERN VMFS

> Aims to provide the single image for all wLCG computing.

- Automatically caches latest experimental software.
- > Simple image with a striped down OS.
 - Same image repackaged for many image formats.
 - Vmware, Virtualbox, Xen, KVM images all available.
 - Designed for your laptop.
 - So scientists can debug their code.
 - Designed for your data center.
 - So scientists can use their code.

> You can subscribe to their image list and always have the latest version.

Summary

> Virtualisation comes in three flavors in our data centers.

- OS level, Para virtualisation and Hardware.
- All are useful but for different tasks.
- > Virtual machines are like real machines
 - But allows us some new flexibility (Dynamic RAM/CPU).
 - Performance overhead is now down to 3-5% for CPU and network.
 - Performance overhead of 40% for disk is not unusual.
 - We hope this reduces soon.
 - Latency is still an issue.
 - But dont use them for main storage, or RDBMS server.
- Consolidation of resources is a great thing.
 - Greatly reduces unused hardware.
- Cloud and Virtual Worker Nodes are going to be standard.
 - Image distribution is being dealt with.
 - People are publishing images today.

References

- > A brief history of virtualisation.
 - http://www.theregister.co.uk/2011/07/14/brief_history_of_virtualisation_part_2/

IBM VM (operating system)

- http://en.wikipedia.org/wiki/VM_(operating_system)
- > Popek and Goldberg virtualization requirements
 - http://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements

